Skip to main content
Log in

Backbone and Ile-δ1, Leu, Val methyl 1H, 15N, and 13C, chemical shift assignments for Rhizopus chinensis lipase

  • Article
  • Published:
Biomolecular NMR Assignments Aims and scope Submit manuscript

Abstract

Lipase r27RCL is a 296-residue, 33 kDa monomeric enzyme with high ester hydrolysis activity, which has significant applications in the baking, paper and leather industries. The lipase gene proRCL from Rhizopus microsporus var. chinensis (also Rhizopus chinensis) CCTCC M201021 was cloned as a fusion construct C-terminal to a maltose-binding protein (MBP) tag, and expressed as MBP-proRCL in an Escherichia coli BL21 trxB (DE3) expression system with uniform 2H,13C,15N-enrichment and Ile-δ1, Leu, and Val 13CH3 methyl labeling. The fusion protein was hydrolyzed by Kex2 protease at the recognition site Lys-Arg between residues −29 and −28 of the prosequence, producing the enzyme form called r27RCL. Here we report extensive backbone 1H, 15N, and 13C, as well as Ile-δ1, Leu, and Val side chain methyl, NMR resonance assignments for r27RCL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

CSI:

Chemical shift index

DSS:

2,2-Dimethyl-2-silapentane-5-sulfonic acid

HSQC:

Heteronuclear single quantum coherence

TROSY:

Transverse relaxation optimized spectroscopy

NOESY:

Nuclear overhauser effect spectroscopy

RCL:

Rhizopus chinensis lipase

IPTG:

Isopropyl β-d-1-thiogalactopyranoside

References

  • Bahrami A, Assadi AH, Markley JL, Eghbalnia HR (2009) Probabilistic interaction network of evidence algorithm and its application to complete labeling of peak lists from protein NMR spectroscopy. PLoS Comput Biol 5:e1000307. doi:10.1371/journal.pcbi.1000307

    Article  ADS  Google Scholar 

  • Borrelli GM, Trono D (2015) Recombinant lipases and phospholipases and their use as biocatalysts for industrial applications. Int J Mol Sci 16:20774–20840. doi:10.3390/ijms160920774

    Article  Google Scholar 

  • Czisch M, Boelens R (1998) Sensitivity enhancement in the TROSY experiment. J Magn Reson 134:158–160. doi:10.1006/jmre.1998.1483

    Article  ADS  Google Scholar 

  • Davis AL, Keeler J, Laue ED, Moskau D (1992) Experiments for recording pure-absorption heteronuclear correlation spectra using pulsed field gradients. J Magn Reson 98:207–216. doi:10.1016/0022-2364(92)90126-R

    ADS  Google Scholar 

  • Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax AD (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293. doi:10.1007/BF00197809

    Article  Google Scholar 

  • Diercks T, Coles M, Kessler H (1999) An efficient strategy for assignment of cross-peaks in 3D heteronuclear NOESY experiments. J Biomol NMR 15:177–180. doi:10.1023/A:1008367912535

    Article  Google Scholar 

  • Eletsky A, Kienhofer A, Pervushin K (2001) TROSY NMR with partially deuterated proteins. J Biomol NMR 20:177–180. doi:10.1023/A:1011265430149

    Article  Google Scholar 

  • Farrow NA et al (1994) Backbone dynamics of a free and phosphopeptide-complexed Src homology 2 domain studied by 15N NMR relaxation. BioChemistry 33:5984–6003. doi:10.1021/bi00185a040

    Article  Google Scholar 

  • Florkin EM, Stotz EH (1965) In: Comprehensive biochemistry, vol 16. Elsevier Publishing Co., Amsterdam, pp 303–326

    Google Scholar 

  • Goto NK, Gardner KH, Mueller GA, Willis RC, Kay LE (1999) A robust and cost-effective method for the production of Val, Leu, Ile (delta 1) methyl-protonated 15N-, 13C-, 2H-labeled proteins. J Biomol Nmr 13:369–374. doi:10.1023/a:1008393201236

    Article  Google Scholar 

  • Jansson M, Li YC, Jendeberg L, Anderson S, Montelione GT, Nilsson B (1996) High-level production of uniformly 15N- and 13C-enriched fusion proteins in Escherichia coli. J Biomol NMR 7:131–141. doi:10.1007/BF00203823

    Article  Google Scholar 

  • Kay LE, Torchia DA, Bax A (1989) Backbone dynamics of proteins as studied by 15N inverse detected heteronuclear NMR spectroscopy: application to staphylococcal nuclease. BioChemistry 28:8972–8979. doi:10.1021/bi00449a003

    Article  Google Scholar 

  • Kay L, Keifer P, Saarinen T (1992) Pure absorption gradient enhanced heteronuclear single quantum correlation spectroscopy with improved sensitivity. J Am Chem Soc 114:10663–10665. doi:10.1021/ja00052a088

    Article  Google Scholar 

  • Kay LE, Xu GY, Singer AU, Muhandiram DR, Formankay JD (1993) A gradient-enhanced HCCH-TOCSY experiment for recording side-chain 1H and 13C correlations in H2O samples of proteins. J Magn Reson Series B 101:333–337. doi:10.1006/jmrb.1993.1053

    Article  ADS  Google Scholar 

  • Lee D, Hilty C, Wider G, Wuthrich K (2006) Effective rotational correlation times of proteins from NMR relaxation interference. J Magn Reson 178:72–76. doi:10.1016/j.jmr.2005.08.014

    Article  ADS  Google Scholar 

  • Martinelle M, Holmquist M, Hult K (1995) On the interfacial activation of Candida antarctica lipase A and B as compared with Humicola lanuginosa lipase. Biochim Biophys Acta 1258:272–276. doi:10.1016/0005-2760(95)00131-U

    Article  Google Scholar 

  • Meissner A, Schulte-Herbrüggen T, Briand J, Sørensen OW (1998) Double spin-state-selective coherence transfer. Application for two-dimensional selection of multiplet components with long transverse relaxation times. Mol Phys 95:1137–1142. doi:10.1080/00268979809483245

    ADS  Google Scholar 

  • Moseley HN, Monleon D, Montelione GT (2001) Automatic determination of protein backbone resonance assignments from triple resonance nuclear magnetic resonance data. Methods Enzymol 339:91–108. doi:10.1016/S0076-6879(01)39311-4

    Article  Google Scholar 

  • Moseley HN, Sahota G, Montelione GT (2004) Assignment validation software suite for the evaluation and presentation of protein resonance assignment data. J Biomol NMR 28:341–355. doi:10.1023/b:jnmr.0000015420.44364.06

    Article  Google Scholar 

  • Palmer AG, Cavanagh J, Wright PE, Rance M (1991) Sensitivity improvement in proton-detected two-dimensional heteronuclear correlation NMR spectroscopy. J Magn Reson 93:151–170. doi:10.1016/0022-2364(91)90036-S

    ADS  Google Scholar 

  • Patel RN, Szarka LJ, Partyka RA (1998) Lipase esterification processes for resolution of enantiomeric mixtures of intermediates in the preparation of taxanes. Google Patents

  • Pervushin K, Riek R, Wider G, Wuthrich K (1997) Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc Natl Acad Sci USA 94:12366–12371

    Article  ADS  Google Scholar 

  • Pervushin KV, Wider G, Wüthrich K (1998) Single transition-to-single transition polarization transfer (ST2-PT) in [15N, 1H]-TROSY. J Biomol NMR 12:345–348. doi:10.1023/A:1008268930690

    Article  Google Scholar 

  • Rance M, Loria JP, Palmer AG (1999) Sensitivity improvement of transverse relaxation-optimized spectroscopy. J Magn Reson 136:92–101. doi:10.1006/jmre.1998.1626

    Article  ADS  Google Scholar 

  • Rossi P et al (2010) A microscale protein NMR sample screening pipeline. J Biomol NMR 46:11–22. doi:10.1007/s10858-009-9386-z

    Article  Google Scholar 

  • Salzmann M, Pervushin K, Wider G, Senn H, Wüthrich K (1998) TROSY in triple-resonance experiments: new perspectives for sequential NMR assignment of large proteins. Proc Natl Acad Sci USA 95:13585–13590. doi:10.1073/pnas.95.23.13585

    Article  ADS  Google Scholar 

  • Salzmann M, Wider G, Pervushin K, Senn H, Wüthrich K (1999) TROSY-type triple-resonance experiments for sequential NMR assignments of large proteins. J Am Chem Soc 121:844–848. doi:10.1021/ja9834226

    Article  Google Scholar 

  • Schleucher J et al (1994) A general enhancement scheme in heteronuclear multidimensional NMR employing pulsed field gradients. J Biomol NMR 4:301–306. doi:10.1007/BF00175254

    Article  Google Scholar 

  • Sha C, Yu X-W, Lin N-X, Zhang M, Xu Y (2013a) Enhancement of lipase r27RCL production in Pichia pastoris by regulating gene dosage and co-expression with chaperone protein disulfide isomerase. Enzyme Microb Technol 53:438–443. doi:10.1016/j.enzmictec.2013.09.009

    Article  Google Scholar 

  • Sha C, Yu X-W, Zhang M, Xu Y (2013b) Efficient secretion of lipase r27RCL in Pichia pastoris by enhancing the disulfide bond formation pathway in the endoplasmic reticulum. J Ind Microbiol Biotechnol 1–9. doi:10.1007/s10295-013-1328-9

  • Sharma S, Kanwar SS (2014) Organic solvent tolerant lipases and applications. Sci World J. doi:10.1155/2014/625258

    Google Scholar 

  • Singh AK, Mukhopadhyay M (2012) Overview of fungal lipase: a review. Appl Biochem Biotechnol 166:486–520. doi:10.1007/s12010-011-9444-3

    Article  Google Scholar 

  • Weigelt J (1998) Single scan, sensitivity-and gradient-enhanced TROSY for multidimensional NMR experiments. J Am Chem Soc 120:10778–10779. doi:10.1021/ja982649y

    Article  Google Scholar 

  • Wishart DS, Sykes BD (1994) The 13C chemical-shift index: a simple method for the identification of protein secondary structure using 13C chemical-shift data. J Biomol NMR 4:171–180. doi:10.1007/BF00175245

    Article  Google Scholar 

  • Xiao R et al (2010) The high-throughput protein sample production platform of the Northeast Structural Genomics Consortium. J Struct Biol 172:21–33. doi:10.1016/j.jsb.2010.07.011

    Article  Google Scholar 

  • Xu Y, Wang D, Mu XQ, Zhao GA, Zhang KC (2002) Biosynthesis of ethyl esters of short-chain fatty acids using whole-cell lipase from Rhizopus chinesis CCTCC M201021 in non-aqueous phase. J Mol Catal B 18:29–37. doi:10.1016/S1381-1177(02)00056-5

    Article  Google Scholar 

  • Yu X-W, Wang L-L, Xu Y (2009) Rhizopus chinensis lipase: gene cloning, expression in Pichia pastoris and properties. J Mol Catal B 57:304–311. doi:10.1016/j.molcatb.2008.10.002

    Article  Google Scholar 

  • Yu X, Xu Y, Wang R (2010) Enhancement of activity of Rhizopus chinensis lipase by directed evolution. J Biotechnol 150:344. doi:10.1016/j.jbiotec.2010.09.374

    Google Scholar 

  • Yu X-W, Wang R, Zhang M, Xu Y, Xiao R (2012) Enhanced thermostability of a Rhizopus chinensis lipase by in vivo recombination in Pichia pastoris. Microbial Cell Fact 11:1–11. doi:10.1186/1475-2859-11-102

    Article  Google Scholar 

  • Yu XW, Xu Y, Xiao R (2016) Lipases from the genus Rhizopus: Characteristics, expression, protein engineering and application. Prog Lipid Res 64:57–68. doi:10.1016/j.plipres.2016.08.001

    Article  Google Scholar 

  • Zhu G, Kong XM, Sze KH (1999) Gradient and sensitivity enhancement of 2D TROSY with water flip-back, 3D NOESY-TROSY and TOCSY-TROSY experiments. J Biomol NMR 13:77–81. doi:10.1023/A:1008398227519

    Article  Google Scholar 

  • Zimmerman DE et al (1997) Automated analysis of protein NMR assignments using methods from artificial intelligence. J Mol Biol 269:592–610. doi:10.1006/jmbi.1997.1052

    Article  Google Scholar 

Download references

Acknowledgements

We thank Profs. J. Hunt and T. Szyperski for helpful discussions on the RCL lipase project. Financial support from the High-end Foreign Experts Recruitment Program (GDW20123200113), Six Talent Peaks Project in Jiangsu Province (NY-010), 333 Project in Jiangsu Province (BRA2015316), NSFC (31671799), and the 111 Project (111-2-06) are greatly appreciated. This work was also supported as a Community Outreach Project of the NIH NIGMS Protein Structure Initiative, Grant U54 GM094597.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao-Wei Yu, Yan Xu or Gaetano T. Montelione.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Yu, XW., Swapna, G.V.T. et al. Backbone and Ile-δ1, Leu, Val methyl 1H, 15N, and 13C, chemical shift assignments for Rhizopus chinensis lipase. Biomol NMR Assign 12, 63–68 (2018). https://doi.org/10.1007/s12104-017-9781-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12104-017-9781-4

Keywords

Navigation