Skip to main content

Chemical shift assignments and the secondary structure of the Est3 telomerase subunit in the yeast Hansenula polymorpha

Abstract

Telomerase is a multisubunit ribonucleoprotein enzyme that is essential for continuous cellular proliferation. A key role of telomerase in cancer and ageing makes it a promising target for the development of cancer therapies and treatments of other age-associated diseases, since telomerase allows unlimited proliferation potential of cells in the majority of cancer types. However, the structure and molecular mechanism of telomerase action are still poorly understood. In budding yeast, telomerase consists of the catalytic subunit, the telomerase reverse transcriptase or Est2 protein, telomerase RNA (TLC1) and two regulatory subunits, Est1 and Est3. Each of the four subunits is essential for in vivo telomerase function. Est3 interacts directly with Est1 and Est2, and stimulates Est2 catalytic activity. However, the exact role of the Est3 protein in telomerase function is still unknown. Determination of the structure, dynamic and functional properties of Est3 can bring new insights into the molecular mechanism of telomerase activity. Here we report nearly complete 1H, 13C and 15N resonance assignments of Est3 from the yeast Hansenula polymorpha. Analysis of the assigned chemical shifts allowed us to identify the protein’s secondary structure and backbone dynamic properties. Structure-based sequence alignment revealed similarities in the structural organization of yeast Est3 and mammalian TPP1 proteins.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Abbreviations

IPTG:

Isopropyl-thio-β-d-galactoside

Est1:

Telomere elongation protein

Est2:

Telomerase reverse transcriptase subunit

Est3:

Telomere replication protein

hpEst3:

Hansenula polymorpha Est3 protein

scEst3:

Saccharomyces cerevisiae Est3 protein

TEN:

Telomerase N-terminal domain

TER:

Telomerase RNA

TERT:

Telomerase reverse transcriptase subunit

TEV:

Tobacco etch virus nuclear-inclusion-a endopeptidase

TPPI:

Telomere-binding protein, component of the six-membered shelterin complex

References

  • Bahrami A, Assadi AH, Markley JL, Eghbalnia HR (2009) Probabilistic interaction network of evidence algorithm and its application to complete labeling of peak lists from protein NMR spectroscopy. PLoS Comp Biol 5(3):e1000307. doi:10.1371/journal.pcbi.1000307

    Article  ADS  Google Scholar 

  • Bisht K, Smith EM, Tesmer VM, Nandakumar J (2016) Structural and functional consequences of a disease mutation in the telomere protein TPP1. Proc Natl Acad Sci USA 113(46):13021–13026. doi:10.1073/pnas.1605685113

    Article  Google Scholar 

  • Cohn M, Blackburn E (1995) Telomerase in yeast. Science 269(5222):396–400. doi:10.1126/science.7618104

    Article  ADS  Google Scholar 

  • Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6(3):277–293

    Article  Google Scholar 

  • Evans SK, Lundblad V (1999) Est1 and Cdc13 as comediators of telomerase access. Science 286(5437):117–120. doi:10.1126/science.286.5437.117

    Article  Google Scholar 

  • Friedman KL, Heit JJ, Long DM, Cech TR (2003) N-terminal domain of yeast telomerase reverse transcriptase: recruitment of Est3p to the telomerase complex. Mol Biol Cell 14(1):1–13. doi:10.1091/mbc.E02-06-0327

    Article  Google Scholar 

  • Hafsa NE, Arndt D, Wishart DS (2015) CSI 3.0: a web server for identifying secondary and super-secondary structure in proteins using NMR chemical shifts. Nucleic Acids Res 43(W1):W370-W377. doi:10.1093/nar/gkv494

    Article  Google Scholar 

  • Hughes TR, Evans SK, Weilbaecher RG, Lundblad V (2000) The Est3 protein is a subunit of yeast telomerase. Curr Biol 10(13):809–812. doi:10.1016/S0960-9822(00)00562-5

    Article  Google Scholar 

  • Kim NW, Piatyszek MA, Prowse KR, Harley CB, West MD, Ho PL, Coviello GM, Wright WE, Weinrich SL, Shay JW (1994) Specific association of human telomerase activity with immortal cells and cancer. Science 266(5193):2011–2015

    Article  ADS  Google Scholar 

  • Kocak H, Ballew BJ, Bisht K, Eggebeen R, Hicks BD, Suman S, O’Neil A, Giri N, Laboratory NDCGR, Group NDCSW, Maillard I, Alter BP, Keegan CE, Nandakumar J, Savage SA (2014) Hoyeraal-Hreidarsson syndrome caused by a germline mutation in the TEL patch of the telomere protein TPP1. Gene Dev 28(19):2090–2102. doi:10.1101/gad.248567.114

    Article  Google Scholar 

  • Lee J, Mandell EK, Tucey TM, Morris DK, Lundblad V (2008) The Est3 protein associates with yeast telomerase through an OB-fold domain. Nat Struct Mol Biol 15(9):990–997. doi:10.1038/nsmb.1472

    Article  Google Scholar 

  • Lee W, Tonelli M, Markley JL (2015) NMRFAM-SPARKY: enhanced software for biomolecular NMR spectroscopy. Bioinformatics 31(8):1325–1327. doi:10.1093/bioinformatics/btu830

    Article  Google Scholar 

  • Lendvay TS, Morris DK, Sah J, Balasubramanian B, Lundblad V (1996) Senescence mutants of Saccharomyces cerevisiae with a defect in telomere replication identify three additional EST genes. Genetics 144(4):1399–1412

    Google Scholar 

  • Lewis KA, Wuttke DS (2012) Telomerase and telomere-associated proteins: structural insights into mechanism and evolution. Structure 20 (1):28–39. doi:10.1016/j.str.2011.10.017

    Article  Google Scholar 

  • Lingner J, Cech TR, Hughes TR, Lundblad V (1997) Three ever shorter telomere (EST) genes are dispensable for in vitro yeast telomerase activity. Proc Natl Acad Sci USA 94(21):11190–11195

    Article  ADS  Google Scholar 

  • Livengood AJ, Zaug AJ, Cech TR (2002) Essential regions of Saccharomyces cerevisiae telomerase RNA: separate elements for Est1p and Est2p interaction. Mol Cell Biol 22(7):2366–2374. doi:10.1128/mcb.22.7.2366-2374.2002

    Article  Google Scholar 

  • Lundblad V, Szostak JW (1989) A mutant with a defect in telomere elongation leads to senescence in yeast. Cell 57(4):633–643. doi:10.1016/0092-8674(89)90132-3

    Article  Google Scholar 

  • Morris DK, Lundblad V (1997) Programmed translational frameshifting in a gene required for yeast telomere replication. Cur Biol 7(12):969–976. doi:10.1016/S0960-9822(06)00416-7

    Article  Google Scholar 

  • Nandakumar J, Bell CF, Weidenfeld I, Zaug AJ, Leinwand LA, Cech TR (2012) The TEL patch of telomere protein TPP1 mediates telomerase recruitment and processivity. Nature 492(7428):285–289. doi:10.1038/nature11648

    Article  ADS  Google Scholar 

  • Rao T, Lubin JW, Armstrong GS, Tucey TM, Lundblad V, Wuttke DS (2014) Structure of Est3 reveals a bimodal surface with differential roles in telomere replication. Proc Natl Acad Sci USA 111(1):214–218. doi:10.1073/pnas.1316453111

    Article  ADS  Google Scholar 

  • Schmidt JC, Dalby AB, Cech TR (2014) Identification of human TERT elements necessary for telomerase recruitment to telomeres. eLife. doi:10.7554/eLife.03563

    Google Scholar 

  • Shen Y, Delaglio F, Cornilescu G, Bax A (2009) TALOS plus : a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J Biomol NMR 44(4):213–223. doi:10.1007/s10858-009-9333-z

    Article  Google Scholar 

  • Singer M, Gottschling D (1994) TLC1: template RNA component of Saccharomyces cerevisiae telomerase. Science 266(5184):404–409. doi:10.1126/science.7545955

    Article  ADS  Google Scholar 

  • Taggart AKP, Teng S-C, Zakian VA (2002) Est1p as a cell cycle-regulated activator of telomere-bound telomerase. Science 297(5583):1023–1026. doi:10.1126/science.1074968

    Article  ADS  Google Scholar 

  • Talley JM, DeZwaan DC, Maness LD, Freeman BC, Friedman KL (2011) Stimulation of yeast telomerase activity by the ever shorter telomere 3 (Est3) subunit is dependent on direct interaction with the catalytic protein Est2. J Biol Chem 286(30):26431–26439. doi:10.1074/jbc.M111.228635

    Article  Google Scholar 

  • Tucey TM, Lundblad V (2013) A yeast telomerase complex containing the Est1 recruitment protein is assembled early in the cell cycle. BioChemistry 52(7):1131–1133. doi:10.1021/bi3015218

    Article  Google Scholar 

  • Tucey TM, Lundblad V (2014) Regulated assembly and disassembly of the yeast telomerase quaternary complex. Gene Dev 28(19):2077–2089. doi:10.1101/gad.246256.114

    Article  Google Scholar 

  • Tuzon CT, Wu Y, Chan A, Zakian VA (2011) The Saccharomyces cerevisiae telomerase subunit Est3 Binds telomeres in a cell cycle– and Est1–dependent manner and interacts directly with Est1 in vitro. PLoS Genet 7(5):e1002060. doi:10.1371/journal.pgen.1002060

    Article  Google Scholar 

  • UniProt: the universal protein knowledgebase (2017). Nucleic Acids Res 45 (D1):D158-D169. doi:10.1093/nar/gkw1099

    Google Scholar 

  • Wyatt HDM, West SC, Beattie TL (2010) InTERTpreting telomerase structure and function. Nucleic Acids Res 38(17):5609–5622. doi:10.1093/nar/gkq370

    Article  Google Scholar 

  • Yen WF, Chico L, Lei M, Lue NF (2011) Telomerase regulatory subunit Est3 in two Candida species physically interacts with the TEN domain of TERT and telomeric DNA. Proc Natl Acad Sci USA 108(51):20370–20375. doi:10.1073/pnas.1017855108

    Article  ADS  Google Scholar 

  • Young Yu E, Wang F, Lei M, Lue NF (2008) A proposed OB-fold with a protein-interaction surface in Candida albicans telomerase protein Est3. Nat Struct Mol Biol 15(9):985–989. doi:10.1038/nsmb.1471

    Article  Google Scholar 

  • Zhong FL, Batista LFZ, Freund A, Pech MF, Venteicher AS, Artandi SE (2012) TPP1 OB-fold domain controls telomere maintenance by recruiting telomerase to chromosome ends. Cell 150(3):481–494. doi:10.1016/j.cell.2012.07.012

    Article  Google Scholar 

Download references

Acknowledgements

The Russian Science Foundation (Grant 14-14-00598) supported the NMR studies. The Russian Foundation for Basic Research (Grant 15-54-74005 EMBL_a) supported protein cloning, expression and purification. The authors are grateful for the opportunity to use the NMR facilities acquired with the support from the Russian Government Program of Competitive Growth of Kazan Federal University, among the world’s leading academic centers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir I. Polshakov.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mariasina, S.S., Efimov, S.V., Petrova, O.A. et al. Chemical shift assignments and the secondary structure of the Est3 telomerase subunit in the yeast Hansenula polymorpha . Biomol NMR Assign 12, 57–62 (2018). https://doi.org/10.1007/s12104-017-9780-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12104-017-9780-5

Keywords

  • Telomerase
  • Protein NMR
  • Resonance assignment
  • Secondary structure