Advertisement

Biomolecular NMR Assignments

, Volume 12, Issue 1, pp 57–62 | Cite as

Chemical shift assignments and the secondary structure of the Est3 telomerase subunit in the yeast Hansenula polymorpha

  • Sofia S. Mariasina
  • Sergey V. Efimov
  • Olga A. Petrova
  • Elena V. Rodina
  • Alexander N. Malyavko
  • Maria I. Zvereva
  • Vladimir V. Klochkov
  • Olga A. Dontsova
  • Vladimir I. Polshakov
Article
  • 224 Downloads

Abstract

Telomerase is a multisubunit ribonucleoprotein enzyme that is essential for continuous cellular proliferation. A key role of telomerase in cancer and ageing makes it a promising target for the development of cancer therapies and treatments of other age-associated diseases, since telomerase allows unlimited proliferation potential of cells in the majority of cancer types. However, the structure and molecular mechanism of telomerase action are still poorly understood. In budding yeast, telomerase consists of the catalytic subunit, the telomerase reverse transcriptase or Est2 protein, telomerase RNA (TLC1) and two regulatory subunits, Est1 and Est3. Each of the four subunits is essential for in vivo telomerase function. Est3 interacts directly with Est1 and Est2, and stimulates Est2 catalytic activity. However, the exact role of the Est3 protein in telomerase function is still unknown. Determination of the structure, dynamic and functional properties of Est3 can bring new insights into the molecular mechanism of telomerase activity. Here we report nearly complete 1H, 13C and 15N resonance assignments of Est3 from the yeast Hansenula polymorpha. Analysis of the assigned chemical shifts allowed us to identify the protein’s secondary structure and backbone dynamic properties. Structure-based sequence alignment revealed similarities in the structural organization of yeast Est3 and mammalian TPP1 proteins.

Keywords

Telomerase Protein NMR Resonance assignment Secondary structure 

Abbreviations

IPTG

Isopropyl-thio-β-d-galactoside

Est1

Telomere elongation protein

Est2

Telomerase reverse transcriptase subunit

Est3

Telomere replication protein

hpEst3

Hansenula polymorpha Est3 protein

scEst3

Saccharomyces cerevisiae Est3 protein

TEN

Telomerase N-terminal domain

TER

Telomerase RNA

TERT

Telomerase reverse transcriptase subunit

TEV

Tobacco etch virus nuclear-inclusion-a endopeptidase

TPPI

Telomere-binding protein, component of the six-membered shelterin complex

Notes

Acknowledgements

The Russian Science Foundation (Grant 14-14-00598) supported the NMR studies. The Russian Foundation for Basic Research (Grant 15-54-74005 EMBL_a) supported protein cloning, expression and purification. The authors are grateful for the opportunity to use the NMR facilities acquired with the support from the Russian Government Program of Competitive Growth of Kazan Federal University, among the world’s leading academic centers.

References

  1. Bahrami A, Assadi AH, Markley JL, Eghbalnia HR (2009) Probabilistic interaction network of evidence algorithm and its application to complete labeling of peak lists from protein NMR spectroscopy. PLoS Comp Biol 5(3):e1000307. doi: 10.1371/journal.pcbi.1000307 ADSCrossRefGoogle Scholar
  2. Bisht K, Smith EM, Tesmer VM, Nandakumar J (2016) Structural and functional consequences of a disease mutation in the telomere protein TPP1. Proc Natl Acad Sci USA 113(46):13021–13026. doi: 10.1073/pnas.1605685113 CrossRefGoogle Scholar
  3. Cohn M, Blackburn E (1995) Telomerase in yeast. Science 269(5222):396–400. doi: 10.1126/science.7618104 ADSCrossRefGoogle Scholar
  4. Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6(3):277–293CrossRefGoogle Scholar
  5. Evans SK, Lundblad V (1999) Est1 and Cdc13 as comediators of telomerase access. Science 286(5437):117–120. doi: 10.1126/science.286.5437.117 CrossRefGoogle Scholar
  6. Friedman KL, Heit JJ, Long DM, Cech TR (2003) N-terminal domain of yeast telomerase reverse transcriptase: recruitment of Est3p to the telomerase complex. Mol Biol Cell 14(1):1–13. doi: 10.1091/mbc.E02-06-0327 CrossRefGoogle Scholar
  7. Hafsa NE, Arndt D, Wishart DS (2015) CSI 3.0: a web server for identifying secondary and super-secondary structure in proteins using NMR chemical shifts. Nucleic Acids Res 43(W1):W370-W377. doi: 10.1093/nar/gkv494 CrossRefGoogle Scholar
  8. Hughes TR, Evans SK, Weilbaecher RG, Lundblad V (2000) The Est3 protein is a subunit of yeast telomerase. Curr Biol 10(13):809–812. doi: 10.1016/S0960-9822(00)00562-5 CrossRefGoogle Scholar
  9. Kim NW, Piatyszek MA, Prowse KR, Harley CB, West MD, Ho PL, Coviello GM, Wright WE, Weinrich SL, Shay JW (1994) Specific association of human telomerase activity with immortal cells and cancer. Science 266(5193):2011–2015ADSCrossRefGoogle Scholar
  10. Kocak H, Ballew BJ, Bisht K, Eggebeen R, Hicks BD, Suman S, O’Neil A, Giri N, Laboratory NDCGR, Group NDCSW, Maillard I, Alter BP, Keegan CE, Nandakumar J, Savage SA (2014) Hoyeraal-Hreidarsson syndrome caused by a germline mutation in the TEL patch of the telomere protein TPP1. Gene Dev 28(19):2090–2102. doi: 10.1101/gad.248567.114 CrossRefGoogle Scholar
  11. Lee J, Mandell EK, Tucey TM, Morris DK, Lundblad V (2008) The Est3 protein associates with yeast telomerase through an OB-fold domain. Nat Struct Mol Biol 15(9):990–997. doi: 10.1038/nsmb.1472 CrossRefGoogle Scholar
  12. Lee W, Tonelli M, Markley JL (2015) NMRFAM-SPARKY: enhanced software for biomolecular NMR spectroscopy. Bioinformatics 31(8):1325–1327. doi: 10.1093/bioinformatics/btu830 CrossRefGoogle Scholar
  13. Lendvay TS, Morris DK, Sah J, Balasubramanian B, Lundblad V (1996) Senescence mutants of Saccharomyces cerevisiae with a defect in telomere replication identify three additional EST genes. Genetics 144(4):1399–1412Google Scholar
  14. Lewis KA, Wuttke DS (2012) Telomerase and telomere-associated proteins: structural insights into mechanism and evolution. Structure 20 (1):28–39. doi: 10.1016/j.str.2011.10.017 CrossRefGoogle Scholar
  15. Lingner J, Cech TR, Hughes TR, Lundblad V (1997) Three ever shorter telomere (EST) genes are dispensable for in vitro yeast telomerase activity. Proc Natl Acad Sci USA 94(21):11190–11195ADSCrossRefGoogle Scholar
  16. Livengood AJ, Zaug AJ, Cech TR (2002) Essential regions of Saccharomyces cerevisiae telomerase RNA: separate elements for Est1p and Est2p interaction. Mol Cell Biol 22(7):2366–2374. doi: 10.1128/mcb.22.7.2366-2374.2002 CrossRefGoogle Scholar
  17. Lundblad V, Szostak JW (1989) A mutant with a defect in telomere elongation leads to senescence in yeast. Cell 57(4):633–643. doi: 10.1016/0092-8674(89)90132-3 CrossRefGoogle Scholar
  18. Morris DK, Lundblad V (1997) Programmed translational frameshifting in a gene required for yeast telomere replication. Cur Biol 7(12):969–976. doi: 10.1016/S0960-9822(06)00416-7 CrossRefGoogle Scholar
  19. Nandakumar J, Bell CF, Weidenfeld I, Zaug AJ, Leinwand LA, Cech TR (2012) The TEL patch of telomere protein TPP1 mediates telomerase recruitment and processivity. Nature 492(7428):285–289. doi: 10.1038/nature11648 ADSCrossRefGoogle Scholar
  20. Rao T, Lubin JW, Armstrong GS, Tucey TM, Lundblad V, Wuttke DS (2014) Structure of Est3 reveals a bimodal surface with differential roles in telomere replication. Proc Natl Acad Sci USA 111(1):214–218. doi: 10.1073/pnas.1316453111 ADSCrossRefGoogle Scholar
  21. Schmidt JC, Dalby AB, Cech TR (2014) Identification of human TERT elements necessary for telomerase recruitment to telomeres. eLife. doi: 10.7554/eLife.03563 Google Scholar
  22. Shen Y, Delaglio F, Cornilescu G, Bax A (2009) TALOS plus : a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J Biomol NMR 44(4):213–223. doi: 10.1007/s10858-009-9333-z CrossRefGoogle Scholar
  23. Singer M, Gottschling D (1994) TLC1: template RNA component of Saccharomyces cerevisiae telomerase. Science 266(5184):404–409. doi: 10.1126/science.7545955 ADSCrossRefGoogle Scholar
  24. Taggart AKP, Teng S-C, Zakian VA (2002) Est1p as a cell cycle-regulated activator of telomere-bound telomerase. Science 297(5583):1023–1026. doi: 10.1126/science.1074968 ADSCrossRefGoogle Scholar
  25. Talley JM, DeZwaan DC, Maness LD, Freeman BC, Friedman KL (2011) Stimulation of yeast telomerase activity by the ever shorter telomere 3 (Est3) subunit is dependent on direct interaction with the catalytic protein Est2. J Biol Chem 286(30):26431–26439. doi: 10.1074/jbc.M111.228635 CrossRefGoogle Scholar
  26. Tucey TM, Lundblad V (2013) A yeast telomerase complex containing the Est1 recruitment protein is assembled early in the cell cycle. BioChemistry 52(7):1131–1133. doi: 10.1021/bi3015218 CrossRefGoogle Scholar
  27. Tucey TM, Lundblad V (2014) Regulated assembly and disassembly of the yeast telomerase quaternary complex. Gene Dev 28(19):2077–2089. doi: 10.1101/gad.246256.114 CrossRefGoogle Scholar
  28. Tuzon CT, Wu Y, Chan A, Zakian VA (2011) The Saccharomyces cerevisiae telomerase subunit Est3 Binds telomeres in a cell cycle– and Est1–dependent manner and interacts directly with Est1 in vitro. PLoS Genet 7(5):e1002060. doi: 10.1371/journal.pgen.1002060 CrossRefGoogle Scholar
  29. UniProt: the universal protein knowledgebase (2017). Nucleic Acids Res 45 (D1):D158-D169. doi: 10.1093/nar/gkw1099 Google Scholar
  30. Wyatt HDM, West SC, Beattie TL (2010) InTERTpreting telomerase structure and function. Nucleic Acids Res 38(17):5609–5622. doi: 10.1093/nar/gkq370 CrossRefGoogle Scholar
  31. Yen WF, Chico L, Lei M, Lue NF (2011) Telomerase regulatory subunit Est3 in two Candida species physically interacts with the TEN domain of TERT and telomeric DNA. Proc Natl Acad Sci USA 108(51):20370–20375. doi: 10.1073/pnas.1017855108 ADSCrossRefGoogle Scholar
  32. Young Yu E, Wang F, Lei M, Lue NF (2008) A proposed OB-fold with a protein-interaction surface in Candida albicans telomerase protein Est3. Nat Struct Mol Biol 15(9):985–989. doi: 10.1038/nsmb.1471 CrossRefGoogle Scholar
  33. Zhong FL, Batista LFZ, Freund A, Pech MF, Venteicher AS, Artandi SE (2012) TPP1 OB-fold domain controls telomere maintenance by recruiting telomerase to chromosome ends. Cell 150(3):481–494. doi: 10.1016/j.cell.2012.07.012 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Sofia S. Mariasina
    • 1
    • 2
  • Sergey V. Efimov
    • 3
  • Olga A. Petrova
    • 4
  • Elena V. Rodina
    • 2
  • Alexander N. Malyavko
    • 2
    • 5
  • Maria I. Zvereva
    • 2
  • Vladimir V. Klochkov
    • 3
  • Olga A. Dontsova
    • 2
    • 4
    • 5
  • Vladimir I. Polshakov
    • 1
  1. 1.Center for Magnetic Tomography and Spectroscopy, Faculty of Fundamental MedicineM.V. Lomonosov Moscow State UniversityMoscowRussia
  2. 2.Department of ChemistryM.V. Lomonosov Moscow State UniversityMoscowRussia
  3. 3.NMR Laboratory, Institute of PhysicsKazan Federal UniversityKazanRussia
  4. 4.A.N. Belozersky Institute of Physico-Chemical BiologyM.V. Lomonosov Moscow State UniversityMoscowRussia
  5. 5.Skolkovo Institute of Science and TechnologyMoscowRussia

Personalised recommendations