Skip to main content

Advertisement

Log in

Backbone resonance assignment of the human uracil DNA glycosylase-2

  • Article
  • Published:
Biomolecular NMR Assignments Aims and scope Submit manuscript

Abstract

The HIV-1 viral protein R (Vpr) is incorporated into virus particle during budding suggesting that its presence in the mature virion is required in the early steps of the virus life cycle in newly infected cells. Vpr is released into the host cell cytoplasm to participate to the translocation of the preintegration complex (PIC) into the nucleus for integration of the viral DNA into the host genome. Actually, Vpr plays a key role in the activation of the transcription of the HIV-1 long terminal repeat (LTR), mediates cell cycle arrest in G2 to M transition, facilitates apoptosis and controls the fidelity of reverse transcription. Moreover, Vpr drives the repair enzyme uracil DNA glycosylase (UNG2) towards degradation. UNG2 has a major role in “Base excision repair” (BER) whose main function is to maintain genome integrity by controlling DNA uracilation. The interaction of Vpr with the cellular protein UNG2 is a key event in various stages of retroviral replication and its role remains to be defined. We have performed the structural study of UNG2 by NMR and we report its (1HN, 15N, 13Cα, 13Cβ and 13C′) chemical shift backbone assignment and its secondary structure in solution as predicted by TALOS-N. We aim to determine with accuracy by NMR, the residues of UNG2 interacting with Vpr, characterize their interaction and use the local structure of UNG2 and its interface with Vpr to propose potential ligands disturbing this interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahn J, Vu T, Novince Z, Guerrero-Santoro J, Rapic-Otrin V, Gronenborn AM (2010) HIV-1 Vpr loads uracil DNA glycosylase-2 onto DCAF1, a substrate recognition subunit of a cullin 4A-RING E3 ubiquitin ligase for proteasome-dependent degradation. J Biol Chem 285(48):37333–37341

    Article  Google Scholar 

  • Bax A, Ikura M (1991) An efficient 3D NMR technique for correlating the proton and15N backbone amide resonances with the α-carbon of the preceding residue in uniformly15N/13C enriched proteins. J Biomol NMR 1(1):99–104

    Article  Google Scholar 

  • Chauhan A, Tikoo A, Patel J, Abdullah AM (2014) HIV-1 endocytosis in astrocytes: a kiss of death or survival of the fittest. Neurosci Res 88:16–22

    Article  Google Scholar 

  • de Goede AL, Vulto AG, Osteraus AD, Gruters RA (2015) Understanding HIV infection for the design of a therapeutic vaccine. Part I : epidemiology and pathogenesis of HIV infection. Ann Pharm Fr 73(2):87–99

    Article  Google Scholar 

  • Descours B, Petitjean G, López-Zaragoza JL, Bruel T, Raffel R, Psomas C, Reynes J, Lacabaratz C, Levy Y, Schwartz O, Lelievre JD, Benkirane M (2017) CD32a is a marker of a CD4 T-cell HIV reservoir harbouring replication-competent proviruses. Nature 543(7646):564–567

    Article  ADS  Google Scholar 

  • Fenard D, Houzet L, Bernard E, Tupin A, Brun S, Mougel M, Devaux C, Chazal N, Briant L (2009) Uracil DNA glycosylase 2 negatively regulates HIV-1 L transcription. Nucleic Acids Res 37:6008–6018

    Article  Google Scholar 

  • Fritz JV, Briant L, Mély Y, Bouaziz S, de Rocquigny H (2010) HIV-1 viral protein R: from structure to function. Future Virol 5:607–625

    Article  Google Scholar 

  • Hagen L, Kavli B, Sousa MM, Torseth K, Liabakk NB, Sundheim O, Penă-Diaz J, Otterlei M, Hørning O, Jensen ON, Krokan HE, Slupphaug G (2008) Cell cycle-specific UNG2 phosphorylations regulate protein turnover, activity and association with RPA. EMBO J 27:51–61

    Article  Google Scholar 

  • Grzesiek S, Bax A (1993) Amino acid type determination in the sequential assignment procedure of uniformly 13C/15N-enriched proteins. J Biomol NMR 3(2):185–204

    Article  Google Scholar 

  • Kavli B, Sundheim O, Akbari M, Otterlei M, Nilsen H, Skorpen F, Aas PA, Hagen L, Krokan HE, Slupphaug G (2002) hUNG2 is the major repair enzyme for removal of uracil from U:A matches, U:G mismatches, and U in single-stranded DNA, with hSMUG1 as a broad specificity backup. J Biol Chem 277(42):39926–39936

    Article  Google Scholar 

  • Kay L, Clore G, Bax A, Gronenborn A (1990) Four-dimensional heteronuclear triple-resonance NMR spectroscopy of interleukin-1 beta in solution. Science 249(4967):411–414

    Article  ADS  Google Scholar 

  • Kim YJ, Wilson DM 3rd (2012) Overview of base excision repair biochemistry. Curr Mol Pharmacol 5(1):3–13

    Article  Google Scholar 

  • Kogan M, Rappaport J (2011) HIV-1 accessory protein Vpr: relevance in the pathogenesis of HIV and potential for therapeutic intervention. Retrovirology 8:1–25

    Article  Google Scholar 

  • Krokan HE, Drabløs F, Slupphaug G (2002) Uracil in DNA: occurrence, consequences and repair. Oncogene 21:8935–8948

    Article  Google Scholar 

  • Langevin C, Maidou-Peindara P, Aas PA, Jacquot G, Otterlei M, Slupphaug G, Benichou S (2009) Human immunodeficiency virus type 1 Vpr modulates cellular expression of UNG2 via a negative transcriptional effect. J Virol 83:10256–10263

    Article  Google Scholar 

  • Mansky LM, Preveral S, Selig L, Benarous R, Benichou S (2000) The interaction of vpr with uracil DNA glycosylase modulates the human immunodeficiency virus type 1 in vivo mutation rate. J Virol 74:7039–7047

    Article  Google Scholar 

  • Morellet N, Bouaziz S, Petitjean P, Roques BP (2003) Nmr structure of The HIV-1 regulatory protein Vpr. J Mol Biol 327(1):215–227

    Article  Google Scholar 

  • Mühle M, Lehmann M, Hoffmann K, Stern D, Kroniger T, Luttmann W, Denner J (2017) Antigenic and immunosuppressive properties of a trimeric recombinant transmembrane envelope protein gp41 of HIV-1. PLoS ONE 12(3):e0173454

    Article  Google Scholar 

  • Selig L, Benichou S, Rogel ME, Wu LI, Vodicka MA, Sire J, Benarous R, Emerman M (1997) Uracil DNA glycosylase specifically interacts with Vpr of both human immunodeficiency virus type 1 and simian immunodeficiency virus of sooty mangabeys, but binding does not correlate with cell cycle arrest. J Virol 71:4842–4846

    Google Scholar 

  • Wen X, Casey Klockow L, Netkorchuk M, Sharifi HJ, de Noronha CMC (2012) The HIV1 protein Vpr acts to enhance constitutive DCAF1-dependent UNG2 turnover. Plos ONE 7:1 e30939

    Article  ADS  Google Scholar 

  • Yan N, Cherepanov P, Daigle JE, Engelman A, Lieberman J (2009) The SET complex acts as a barrier to autointegration of HIV-1. PLoS Pathog 5:1–13

    Article  Google Scholar 

  • Yan N, O’Day E, Wheeler LA, Engelman A, Lieberman J (2011) HIV DNA is heavily uracilated, which protects it from autointegration. Proc Natl Acad Sci USA 108:9244–9249

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank the TGIR-RMN program for the financial support. Thanks a lot to Dr. François-Xavier Canterelle at Lille University and to Dr. Nelly Morellet at ISCN institute at Gif-sur-Yvette for their help during the recording of the experiments and for their technical advices. We also thank Dr. Nathalie Chazal at UMR 9004 CNRS-Université Montpellier, for the UNG2 (93-313) Plasmid construction.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serge Bouaziz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kara, H., Ponchon, L. & Bouaziz, S. Backbone resonance assignment of the human uracil DNA glycosylase-2. Biomol NMR Assign 12, 37–42 (2018). https://doi.org/10.1007/s12104-017-9776-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12104-017-9776-1

Keywords

Navigation