Advertisement

Biomolecular NMR Assignments

, Volume 12, Issue 1, pp 31–35 | Cite as

NMR study of non-structural proteins–part III: 1H, 13C, 15N backbone and side-chain resonance assignment of macro domain from Chikungunya virus (CHIKV)

  • Michail V. Lykouras
  • Aikaterini C. Tsika
  • Julie Lichière
  • Nicolas Papageorgiou
  • Bruno Coutard
  • Detlef Bentrop
  • Georgios A. Spyroulias
Article

Abstract

Macro domains are conserved protein domains found in eukaryotic organisms, bacteria, and archaea as well as in certain viruses. They consist of 130–190 amino acids and can bind ADP-ribose. Although the exact role of these domains is not fully understood, the conserved binding affinity for ADP-ribose indicates that this ligand is important for the function of the domain. Such a macro domain is also present in the non-structural protein 3 (nsP3) of Chikungunya Alphavirus (CHIKV) and consists of 160 amino acids. In this study we describe the high yield expression of the macro domain from CHIKV and its preliminary structural analysis via solution NMR spectroscopy. The macro domain seems to be folded in solution and an almost complete backbone assignment was achieved. In addition, the α/β/α sandwich topology with 4 α-helices and 6 β-strands was predicted by TALOS+.

Keywords

Viral macro domains Alphavirus Chikungunya virus ADP-ribose-binding module Recombinant protein expression NMR spectroscopy 

Abbreviations

CHIKV

Chikungunya virus

nsP3

Non-structural Protein 3

PAR

Poly-ADP-ribose

MAR

Mono-ADP-ribose

NMR

Nuclear magnetic resonance

OD

Optical density

IPTG

Isopropyl-β-d-1-thiogalactopyranoside

EDTA

Ethylenediaminetetraacetic acid

DTT

Dithiothreitol

DSS

4,4-Dimethyl-4-silapentane-1-sulfonic acid

MAYV

Mayaro virus

VEEV

Venezuelan Equine Encephalitis virus

Notes

Acknowledgements

“SEE-DRUG” Grant (EU FP7 REGPOT CT-2011-285950; http://www.seedrug.upatras.gr), European Virus Archive (EVA) project (EU FP7 Capacities Project No. 228292) are acknowledged for financial support of this work. D.B. thanks Dr. B. Fakler (University of Freiburg) for continued support.

References

  1. Bouraï M, Lucas-Hourani M, Gad HH, Drosten C, Jacob Y, Tafforeau L, Cassonnet P, Jones LM, Judith D, Couderc T, Lecuit M, André P, Kümmerer BM, Lotteau V, Desprès P, Tangy F, Vidalaina PO (2012) Mapping of Chikungunya Virus interactions with host proteins identified nsP2 as a highly connected viral component. J Virol 86(6):3121CrossRefGoogle Scholar
  2. Caglioti C, Lalle E, Castilletti C, Carletti F, Capobianchi MR, Bordi L (2013) Chikungunya virus infection: an overview. New Microbiol 36:211–227Google Scholar
  3. Eckei L, Krieg S, Bütepage M, Lehmann A, Gross A, Lippok B, Grimm AR, Kümmerer BM, Rossetti G, Lüscher B, Verheugd P (2017) The conserved macrodomains of the non-structural proteins of Chikungunya virus and other pathogenic positive strand RNA viruses function as mono-ADPribosylhydrolases. Sci Rep 7:41746ADSCrossRefGoogle Scholar
  4. Fros JJ, Domeradzka NE, Baggen J, Geertsema C, Flipse J, Vlak JM, Pijlman GP (2012) Chikungunya Virus nsP3 blocks stress granule assembly by recruitment of G3BP into Cytoplasmic Foci. J Virol 86(19):10873–10879CrossRefGoogle Scholar
  5. Han W, Li X, Fu X (2011) The macro domain protein family: structure, functions, and their potential therapeutic implications. Mutat Res 727:86–103CrossRefGoogle Scholar
  6. Keller R (2004) The computer aided resonance assignment tutorial CH-6410. Cantina Verlag, GoldauGoogle Scholar
  7. Makrynitsa GI, Ntonti D, Marousis KD, Tsika AC, Lichiere J, Papageorgiou N, Coutard B, Bentrop D, Spyroulias GA (2015) NMR study of non-structural proteins–part II: 1H, 13C, 15N backbone and side-chain resonance assignment of macro domain from Venezuelan equine encephalitis virus (VEEV). Biomol NMR Assign 9(2):247–251CrossRefGoogle Scholar
  8. Malet H, Coutard B, Jamal S, Dutartre H, Papageorgiou N, Neuvonen M, Ahola T, Forrester N, Gould EA, Lafitte D, Ferron F, Lescar J, Gorbalenya AE, Lamballerie X, Canard B (2009) The crystal structures of Chikungunya and Venezuelan Equine Encephalitis Virus nsP3 macro domains define a conserved adenosine binding pocket. J Virol 83(13):6534–6545CrossRefGoogle Scholar
  9. Melekis E, Tsika AC, Lichiere J, Chasapis CT, Margiolaki I, Papageorgiou N, Coutard B, Bentrop D, Spyroulias GA (2015) NMR study of non-structural proteins–part I: 1H, 13C, 15N backbone and side-chain resonance assignment of macro domain from Mayaro virus (MAYV). Biomol NMR Assign 9(1):191–195CrossRefGoogle Scholar
  10. Pehrson JR, Fried VA (1992) MacroH2A, a core histone containing a large nonhistone region. Science 257:1398–1400ADSCrossRefGoogle Scholar
  11. Powers AM, Logue CH (2007) Changing patterns of Chikungunya virus: re-emergence of a zoonotic arbovirus. J Gen Virol 88(9):2363–2377CrossRefGoogle Scholar
  12. Queyriaux B, Simon F, Grandadam M, Michel R, Tolou H et al (2008) Clinical burden of Chikungunya virus infection. Lancet Infect Dis 8:2–3CrossRefGoogle Scholar
  13. Rack JGM, Perina D, Ahel I (2016) Macrodomains: structure, function, evolution, and catalytic activities. Annu Rev Biochem 85:2.1–2.24CrossRefGoogle Scholar
  14. Robinson MC (1955) An epidemic of virus disease in Southern Province, Tanganyika Territory, in 1952–1953. I. Clinical features. Trans Royal Society Trop Med Hyg 49:28–32CrossRefGoogle Scholar
  15. Shen Y, Bax A (2010) Prediction of Xaa-Pro peptide bond conformation from sequence and chemical shifts. J Biomol NMR 46(3):199–204CrossRefGoogle Scholar
  16. Shen Y, Delaglio F, Cornilescu G, Bax A (2009) TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J Biomol NMR 44(4):213–223CrossRefGoogle Scholar
  17. Simon F, Javelle E, Oliver M, Leparc-Goffart I, Marimoutou C (2011) Chikungunya Virus Infection. Curr Infect Dis Rep 13:218–228CrossRefGoogle Scholar
  18. Tesh RB (1982) Arthritides caused by mosquito-borne viruses. Annu Rev Med 33:31–40CrossRefGoogle Scholar
  19. Thiboutot MM, Kannan S, Kawalekar OU, Shedlock DJ, Khan AS, Sarangan G, Srikanth P, Weiner DB, Muthumani K (2010) Chikungunya: a potentially emerging epidemic? PLoS Negl Trop Dis 4(4):e623CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Department of PharmacyUniversity of PatrasPatraGreece
  2. 2.Aix-Marseille Université, CNRS, AFMB UMR 7257MarseilleFrance
  3. 3.Institute of Physiology II, Faculty of MedicineUniversity of FreiburgFreiburgGermany

Personalised recommendations