Biomolecular NMR Assignments

, Volume 12, Issue 1, pp 5–9 | Cite as

1H, 15N and 13C sequence specific backbone assignment of the vanadate inhibited hematopoietic tyrosine phosphatase

  • Luciana E. S. F. Machado
  • Rebecca Page
  • Wolfgang Peti


The sequence-specific backbone assignment of hematopoietic protein tyrosine phosphatase (HePTP; PTPN7) in presence of vanadate has been determined, based on triple-resonance experiments using uniformly [13C,15N]-labeled protein. These assignments facilitate further studies of HePTP in the presence of inhibitors to target leukemia and provide further insights into the function of protein tyrosine phosphatases.


HePTP Protein tyrosine phosphatase Vanadate Inhibition Protein dynamics Leukemia 



This work was supported by the American Diabetes Association Pathway to Stop Diabetes Grant 1-14-ACN-31 and a Brazil Initiative Brown University grant to WP and NIH R01GM098482 to RP.


  1. Choy MS, Li Y, Machado LESF et al (2017) Conformational rigidity and protein dynamics at distinct timescales regulate PTP1B activity and allostery. Mol Cell 65:644–658.e5. Doi: 10.1016/j.molcel.2017.01.014 CrossRefGoogle Scholar
  2. Delaglio F, Grzesiek S, Vuister GW et al (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293CrossRefGoogle Scholar
  3. Francis DM, Różycki B, Koveal D et al (2011) Structural basis of p38α regulation by hematopoietic tyrosine phosphatase. Nat Chem Biol 7:916–924. Doi: 10.1038/nchembio.707 CrossRefGoogle Scholar
  4. Jeeves M, McClelland DM, Barr AJ, Overduin M (2008) Sequence-specific 1H, 13C and 15N backbone resonance assignments of the 34 kDa catalytic domain of human PTPN7. Biomol NMR Assign 2:101–103. Doi: 10.1007/s12104-008-9095-7 CrossRefGoogle Scholar
  5. Machado LESF, Shen TL, Page R, Peti W (2017) The KIM-family protein-tyrosine phosphatases use distinct reversible oxidation intermediates: intramolecular or intermolecular disulfide bond formation. J Biol Chem 292(21):8786–8796. doi: 10.1074/jbc.M116.774174 CrossRefGoogle Scholar
  6. Muñoz JJ, Tárrega C, Blanco-Aparicio C, Pulido R (2003) Differential interaction of the tyrosine phosphatases PTP-SL, STEP and HePTP with the mitogen-activated protein kinases ERK1/2 and p38alpha is determined by a kinase specificity sequence and influenced by reducing agents. Biochem J 372:193–201. Doi: 10.1042/BJ20021941 CrossRefGoogle Scholar
  7. Peti W, Page R (2007) Strategies to maximize heterologous protein expression in Escherichia coli with minimal cost. Protein Expr Purif 51:1–10. Doi: 10.1016/j.pep.2006.06.024 CrossRefGoogle Scholar
  8. Sergienko E, Xu J, Liu WH et al (2012) Inhibition of hematopoietic protein tyrosine phosphatase augments and prolongs ERK1/2 and p38 activation. ACS Chem Biol 7:367–377. Doi: 10.1021/cb2004274 CrossRefGoogle Scholar
  9. Vranken WF, Boucher W, Stevens TJ et al (2005) The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins 59:687–696. Doi: 10.1002/prot.20449 CrossRefGoogle Scholar
  10. Zanke B, Suzuki H, Kishihara K et al (1992) Cloning and expression of an inducible lymphoid-specific, protein tyrosine phosphatase (HePTPase). Eur J Immunol 22:235–239. Doi: 10.1002/eji.1830220134 CrossRefGoogle Scholar
  11. Zanke B, Squire J, Griesser H et al (1994) A hematopoietic protein tyrosine phosphatase (HePTP) gene that is amplified and overexpressed in myeloid malignancies maps to chromosome 1q32.1. Leukemia 8:236–244Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Luciana E. S. F. Machado
    • 1
    • 3
  • Rebecca Page
    • 2
    • 3
  • Wolfgang Peti
    • 1
    • 3
  1. 1.Department of Molecular Pharmacology, Physiology and BiotechnologyBrown UniversityProvidenceUSA
  2. 2.Department of Molecular Biology, Cell Biology and BiochemistryBrown UniversityProvidenceUSA
  3. 3.Department of Chemistry and BiochemistryUniversity of ArizonaTucsonUSA

Personalised recommendations