Skip to main content
Log in

Chemical shift assignments for the apo-form of the catalytic domain, the linker region, and the carbohydrate-binding domain of the cellulose-active lytic polysaccharide monooxygenase ScLPMO10C

  • Article
  • Published:
Biomolecular NMR Assignments Aims and scope Submit manuscript

Abstract

The apo-form of the 21.4 kDa catalytic domain and the 10.7 kDa carbohydrate binding domain of the AA10 family lytic polysaccharide monooxygenase ScLPMO10C from Streptomyces coelicolor have been isotopically labeled and recombinantly expressed in Escherichia coli. In this paper, we report the 1H, 13C, and 15N chemical shift assignments of each individual domain as well as an ensemble of the assignment for the full-length protein, including its approximately 30-amino acid long linker.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Aslanidis C, de Jong PJ (1990) Ligation-independent cloning of PCR products (LIC-PCR). Nucleic Acids Res 18:6069–6074. doi:10.1093/nar/18.20.6069

    Article  Google Scholar 

  • Beeson WT, Vu VV, Span EA et al (2015) Cellulose degradation by polysaccharide monooxygenases. Annu Rev Biochem 84:923–946. doi:10.1146/annurev-biochem-060614-034439

    Article  Google Scholar 

  • Boraston AB, Bolam DN, Gilbert HJ, Davies GJ (2004) Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem J 382:769–781. doi:10.1042/BJ20040892

    Article  Google Scholar 

  • Courtade G, Le SB, Sætrom GI et al (2017) A novel expression system for lytic polysaccharide monooxygenases. Carbohydr Res. doi:10.1016/j.carres.2017.02.003

    Google Scholar 

  • Crouch LI, Labourel A, Walton PH et al (2016) The contribution of non-catalytic carbohydrate binding modules to the activity lytic polysaccharide monooxygenases. J Biol Chem 291:7439–7449. doi:10.1074/jbc.M115.702365

    Article  Google Scholar 

  • Forsberg Z, Vaaje-Kolstad G, Westereng B et al (2011) Cleavage of cellulose by a CBM33 protein. Protein Sci 20:1479–1483. doi:10.1002/pro.689

    Article  Google Scholar 

  • Forsberg Z, Mackenzie AK, Sørlie M et al (2014a) Structural and functional characterization of a conserved pair of bacterial cellulose-oxidizing lytic polysaccharide monooxygenases. Proc Natl Acad Sci USA 111:8446–8451. doi:10.1073/pnas.1402771111

    Article  ADS  Google Scholar 

  • Forsberg Z, Røhr AK, Mekasha S et al (2014b) Comparative study of two chitin-active and two cellulose-active AA10-type lytic polysaccharide monooxygenases. Biochemistry 53:1647–1656. doi:10.1021/bi5000433

  • Forsberg Z, Nelson CE, Dalhus B et al (2016) Structural and functional analysis of a lytic polysaccharide monooxygenase important for efficient utilization of chitin in Cellvibrio japonicus. J Biol Chem 291:7300–7312. doi:10.1074/jbc.M115.700161

    Article  Google Scholar 

  • Gasteiger E, Hoogland C, Gattiker A et al (2005) Protein identification and analysis tools on the ExPASy server. In: Walker JM (ed) The proteomics protocols handook. Springer, New York, pp 571–607

    Chapter  Google Scholar 

  • George RA, Heringa J (2002) An analysis of protein domain linkers: their classification and role in protein folding. Protein Eng 15:871–879. doi:10.1093/PROTEIN/15.11.871

    Article  Google Scholar 

  • Hemsworth GR, Henrissat B, Davies GJ, Walton PH (2014) Discovery and characterization of a new family of lytic polysaccharide monooxygenases. Nat Chem Biol 10:122–126. doi:10.1038/nchembio.1417

    Article  Google Scholar 

  • Jeong JY, Yim HS, Ryu JY et al (2012) One-step sequence-and ligation-independent cloning as a rapid and versatile cloning method for functional genomics studies. Appl Environ Microbiol 78:5440–5443. doi:10.1128/AEM.00844-12

    Article  Google Scholar 

  • Jervis EJ, Haynes CA, Kilburn G et al (1997) Surface diffusion of cellulases and their isolated binding domains on cellulose surface. J Biol Chem 272:24016–24023. doi:10.1074/jbc.272.38.24016

    Article  Google Scholar 

  • Johansen KS (2016) Lytic polysaccharide monooxygenases: the microbial power tool for lignocellulose degradation. Trends Plant Sci 21:926–936. doi:10.1016/j.tplants.2016.07.012

    Article  Google Scholar 

  • Kazimierczuk K, Orekhov VY (2011) Accelerated NMR spectroscopy by using compressed sensing. Angew Chem Int Ed 50:5556–5559. doi:10.1002/anie.201100370

    Article  Google Scholar 

  • Levasseur A, Drula E, Lombard V et al (2013) Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes. Biotechnol Biofuels 6:41–54. doi:10.1186/1754-6834-6-41

    Article  Google Scholar 

  • Lo Leggio L, Simmons TJ, Poulsen JN et al (2015) Structure and boosting activity of a starch-degrading lytic polysaccharide monooxygenase. Nat Commun 6:1–9. doi:10.1038/ncomms6961

    Article  Google Scholar 

  • Marsh J a, Singh VK, Jia Z, Forman-Kay JD (2006) Sensitivity of secondary structure propensities to sequence differences between alpha- and gamma-synuclein: implications for fibrillation. Protein Sci 15:2795–2804. doi:10.1110/ps.062465306

    Article  Google Scholar 

  • Nakamura T, Mine S, Hagihara Y et al (2008) Tertiary structure and carbohydrate recognition by the chitin-binding domain of a hyperthermophilic chitinase from Pyrococcus furiosus. J Mol Biol 381:670–680. doi:10.1016/j.jmb.2008.06.006

    Article  Google Scholar 

  • Orekhov VY, Jaravine VA (2011) Analysis of non-uniformly sampled spectra with multi-dimensional decomposition. Prog Nucl Magn Reson Spectrosc 59:271–292. doi:10.1016/j.pnmrs.2011.02.002

    Article  Google Scholar 

  • Shen Y, Bax A (2013) Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks. J Biomol NMR 56:227–241. doi:10.1007/s10858-013-9741-y

    Article  Google Scholar 

  • Vaaje-Kolstad G, Westereng B, Horn SJ et al (2010) An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides. Science 330:219–222. doi:10.1126/science.1192231

    Article  ADS  Google Scholar 

  • Vaaje-Kolstad G, Forsberg Z, Loose JS et al (2017) Structural diversity of lytic polysaccharide monooxygenases. Curr Opin Struct Biol 44:67–76. doi:10.1016/j.sbi.2016.12.012

    Article  Google Scholar 

  • Xu GY, Ong E, Gilkes NR et al (1995) Solution structure of a cellulose-binding domain from Cellulomonas fimi by nuclear magnetic resonance spectroscopy. BioChemistry 34:6993–7009. doi:10.1021/bi00021a011

    Article  Google Scholar 

  • Zhang H, Neal S, Wishart DS (2003) RefDB: a database of uniformly referenced protein chemical shifts. J Biomol NMR 25:173–195. doi:10.1023/A:1022836027055

    Article  Google Scholar 

Download references

Acknowledgements

This work was financed by SO-funds from NTNU Norwegian University of Science and Technology and by the MARPOL project, the Norwegian NMR Platform, both from the Research Council of Norway (grant numbers 221576, 226244, respectively).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Finn L. Aachmann.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Courtade, G., Forsberg, Z., Vaaje-Kolstad, G. et al. Chemical shift assignments for the apo-form of the catalytic domain, the linker region, and the carbohydrate-binding domain of the cellulose-active lytic polysaccharide monooxygenase ScLPMO10C. Biomol NMR Assign 11, 257–264 (2017). https://doi.org/10.1007/s12104-017-9759-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12104-017-9759-2

Keywords

Profiles

  1. Finn L. Aachmann