Abstract
The apo-form of the 21.4 kDa catalytic domain and the 10.7 kDa carbohydrate binding domain of the AA10 family lytic polysaccharide monooxygenase ScLPMO10C from Streptomyces coelicolor have been isotopically labeled and recombinantly expressed in Escherichia coli. In this paper, we report the 1H, 13C, and 15N chemical shift assignments of each individual domain as well as an ensemble of the assignment for the full-length protein, including its approximately 30-amino acid long linker.




Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Aslanidis C, de Jong PJ (1990) Ligation-independent cloning of PCR products (LIC-PCR). Nucleic Acids Res 18:6069–6074. doi:10.1093/nar/18.20.6069
Beeson WT, Vu VV, Span EA et al (2015) Cellulose degradation by polysaccharide monooxygenases. Annu Rev Biochem 84:923–946. doi:10.1146/annurev-biochem-060614-034439
Boraston AB, Bolam DN, Gilbert HJ, Davies GJ (2004) Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem J 382:769–781. doi:10.1042/BJ20040892
Courtade G, Le SB, Sætrom GI et al (2017) A novel expression system for lytic polysaccharide monooxygenases. Carbohydr Res. doi:10.1016/j.carres.2017.02.003
Crouch LI, Labourel A, Walton PH et al (2016) The contribution of non-catalytic carbohydrate binding modules to the activity lytic polysaccharide monooxygenases. J Biol Chem 291:7439–7449. doi:10.1074/jbc.M115.702365
Forsberg Z, Vaaje-Kolstad G, Westereng B et al (2011) Cleavage of cellulose by a CBM33 protein. Protein Sci 20:1479–1483. doi:10.1002/pro.689
Forsberg Z, Mackenzie AK, Sørlie M et al (2014a) Structural and functional characterization of a conserved pair of bacterial cellulose-oxidizing lytic polysaccharide monooxygenases. Proc Natl Acad Sci USA 111:8446–8451. doi:10.1073/pnas.1402771111
Forsberg Z, Røhr AK, Mekasha S et al (2014b) Comparative study of two chitin-active and two cellulose-active AA10-type lytic polysaccharide monooxygenases. Biochemistry 53:1647–1656. doi:10.1021/bi5000433
Forsberg Z, Nelson CE, Dalhus B et al (2016) Structural and functional analysis of a lytic polysaccharide monooxygenase important for efficient utilization of chitin in Cellvibrio japonicus. J Biol Chem 291:7300–7312. doi:10.1074/jbc.M115.700161
Gasteiger E, Hoogland C, Gattiker A et al (2005) Protein identification and analysis tools on the ExPASy server. In: Walker JM (ed) The proteomics protocols handook. Springer, New York, pp 571–607
George RA, Heringa J (2002) An analysis of protein domain linkers: their classification and role in protein folding. Protein Eng 15:871–879. doi:10.1093/PROTEIN/15.11.871
Hemsworth GR, Henrissat B, Davies GJ, Walton PH (2014) Discovery and characterization of a new family of lytic polysaccharide monooxygenases. Nat Chem Biol 10:122–126. doi:10.1038/nchembio.1417
Jeong JY, Yim HS, Ryu JY et al (2012) One-step sequence-and ligation-independent cloning as a rapid and versatile cloning method for functional genomics studies. Appl Environ Microbiol 78:5440–5443. doi:10.1128/AEM.00844-12
Jervis EJ, Haynes CA, Kilburn G et al (1997) Surface diffusion of cellulases and their isolated binding domains on cellulose surface. J Biol Chem 272:24016–24023. doi:10.1074/jbc.272.38.24016
Johansen KS (2016) Lytic polysaccharide monooxygenases: the microbial power tool for lignocellulose degradation. Trends Plant Sci 21:926–936. doi:10.1016/j.tplants.2016.07.012
Kazimierczuk K, Orekhov VY (2011) Accelerated NMR spectroscopy by using compressed sensing. Angew Chem Int Ed 50:5556–5559. doi:10.1002/anie.201100370
Levasseur A, Drula E, Lombard V et al (2013) Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes. Biotechnol Biofuels 6:41–54. doi:10.1186/1754-6834-6-41
Lo Leggio L, Simmons TJ, Poulsen JN et al (2015) Structure and boosting activity of a starch-degrading lytic polysaccharide monooxygenase. Nat Commun 6:1–9. doi:10.1038/ncomms6961
Marsh J a, Singh VK, Jia Z, Forman-Kay JD (2006) Sensitivity of secondary structure propensities to sequence differences between alpha- and gamma-synuclein: implications for fibrillation. Protein Sci 15:2795–2804. doi:10.1110/ps.062465306
Nakamura T, Mine S, Hagihara Y et al (2008) Tertiary structure and carbohydrate recognition by the chitin-binding domain of a hyperthermophilic chitinase from Pyrococcus furiosus. J Mol Biol 381:670–680. doi:10.1016/j.jmb.2008.06.006
Orekhov VY, Jaravine VA (2011) Analysis of non-uniformly sampled spectra with multi-dimensional decomposition. Prog Nucl Magn Reson Spectrosc 59:271–292. doi:10.1016/j.pnmrs.2011.02.002
Shen Y, Bax A (2013) Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks. J Biomol NMR 56:227–241. doi:10.1007/s10858-013-9741-y
Vaaje-Kolstad G, Westereng B, Horn SJ et al (2010) An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides. Science 330:219–222. doi:10.1126/science.1192231
Vaaje-Kolstad G, Forsberg Z, Loose JS et al (2017) Structural diversity of lytic polysaccharide monooxygenases. Curr Opin Struct Biol 44:67–76. doi:10.1016/j.sbi.2016.12.012
Xu GY, Ong E, Gilkes NR et al (1995) Solution structure of a cellulose-binding domain from Cellulomonas fimi by nuclear magnetic resonance spectroscopy. BioChemistry 34:6993–7009. doi:10.1021/bi00021a011
Zhang H, Neal S, Wishart DS (2003) RefDB: a database of uniformly referenced protein chemical shifts. J Biomol NMR 25:173–195. doi:10.1023/A:1022836027055
Acknowledgements
This work was financed by SO-funds from NTNU Norwegian University of Science and Technology and by the MARPOL project, the Norwegian NMR Platform, both from the Research Council of Norway (grant numbers 221576, 226244, respectively).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Rights and permissions
About this article
Cite this article
Courtade, G., Forsberg, Z., Vaaje-Kolstad, G. et al. Chemical shift assignments for the apo-form of the catalytic domain, the linker region, and the carbohydrate-binding domain of the cellulose-active lytic polysaccharide monooxygenase ScLPMO10C. Biomol NMR Assign 11, 257–264 (2017). https://doi.org/10.1007/s12104-017-9759-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12104-017-9759-2


