Skip to main content
Log in

NMR backbone resonance assignment and solution secondary structure determination of human NSD1 and NSD2

  • Article
  • Published:
Biomolecular NMR Assignments Aims and scope Submit manuscript

Abstract

Proteins of the NSD family are histone-methyl transferases with critical functions in the regulation of chromatin structure and function. NSD1 and NSD2 are homologous proteins that function as epigenetic regulators of transcription through their abilities to catalyse histone methylation. Misregulation of NSD1 and NSD2 expression or mutations in their genes are linked to a number of human diseases such as Sotos syndrome, and cancers including acute myeloid leukemia, multiple myeloma, and lung cancer. The catalytic domain of both proteins contains a conserved SET domain which is involved in histone methylation. Here we report the backbone resonance assignments and secondary structure information of the catalytic domains of human NSD1 and NSD2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Berdasco M, Ropero S, Setien F, Fraga MF, Lapunzina P, Losson R, Alaminos M, Cheung N, Rahman N, Esteller M (2009) Epigenetic inactivation of the Sotos overgrowth syndrome gene histone methyltransferase NSD1 inhuman neuroblastoma and glioma. Proc Natl Acad Sci USA 106(51):21830–21835

    Article  ADS  Google Scholar 

  • Douglas J, Hanks S, Temple IK, Davies S, Murray A, Upadhyaya M, Tomkins S, Hughes HE, Cole TR, Rahman N (2003) NSD1 mutations are the major cause of Sotos syndrome and occur in some cases of Weaver syndrome but are rare in other overgrowth phenotypes. Am J Hum Genet 72(1):132–143

    Article  Google Scholar 

  • Hafsa NE, Wishart DS (2014) CSI 2.0: a significantly improved version of the chemical shift index. J Biomol NMR 60:131–146

  • Huang N, Vom Baur E, Garnier JM, Lerouge T, Vonesch JL, Lutz Y, Chambon P, Losson R (1998) Two distinct nuclear receptor interaction domains in NSD1, a novel SET protein that exhibits characteristics of both corepressors and coactivators. EMBO J 17(12):3398–3412

    Article  Google Scholar 

  • Jaju RJ, Fidler C, Haas OA, Strickson AJ, Watkins F, Clark K, Cross NC, Cheng JF, Aplan PD, Kearney L, Boultwood J, Wainscoat JS (2001) A novel gene, NSD1, is fused to NUP98 in the t(5;11)(q35;p15.5) in de novo childhood acute myeloid leukemia. Blood 98(4):1264–1267

    Article  Google Scholar 

  • Kabsch W, Sander C (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22(12):2577–2637

  • Keats JJ, Reiman T, Maxwell CA, Taylor BJ, Larratt LM, Mant MJ, Belch AR, Pilarski LM (2003) In multiple myeloma, t(4;14)(p16;q32) is an adverse prognostic factor irrespective of FGFR3 expression. Blood 101(4):1520–1529

    Article  Google Scholar 

  • Kurotaki N, Harada N, Yoshiura K, Sugano S, Niikawa N, Matsumoto N (2001) Molecular characterization of NSD1, a human homologue of the mouse Nsd1 gene. Gene 279(2):197–204

    Article  Google Scholar 

  • La Starza R, Gorello P, Rosati R, Riezzo A, Veronese A, Ferrazzi E, Martelli MF, Negrini M, Mecucci C (2004) Cryptic insertion producing two NUP98/NSD1 chimeric transcripts in adult refractory anemia with an excess of blasts. Genes Chromosom Cancer 41(4):395–399

    Article  Google Scholar 

  • Li Y, Trojer P, Xu CF, Cheung P, Kuo A, Drury WJ III, Qiao Q, Neubert TA, Xu RM, Gozani O, Reinberg D (2009) The target of the NSD family of histone lysine methyltransferases depends on the nature of the substrate. J Biol Chem 284(49):34283–34295

    Article  Google Scholar 

  • Lu T, Jackson MW, Wang B, Yang M, Chance MR, Miyagi M, Gudkov AV, Stark GR (2010) Regulation of NF-kappaB by NSD1/FBXL11-dependent reversible lysine methylation of p65. Proc Natl Acad Sci USA. 107(1):46–51

    Article  ADS  Google Scholar 

  • Needleman SB, Wunsch CD (1970) A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol 48(3):443–453

    Article  Google Scholar 

  • Pei H, Zhang L, Luo K, Qin Y, Chesi M, Fei F, Bergsagel PL, Wang L, You Z, Lou Z (2011) MMSET regulates histone H4K20 methylation and 53BP1 accumulation at DNA damage sites. Nature 470(7332):124–128

    Article  ADS  Google Scholar 

  • Qiao Q, Li Y, Chen Z, Wang M, Reinberg D, Xu RM (2011) The structure of NSD1 reveals an autoregulatory mechanism underlying histone H3K36 methylation. J Biol Chem 286(10):8361–8368

    Article  Google Scholar 

  • Rayasam GV, Wendling O, Angrand PO, Mark M, Niederreither K, Song L, Lerouge T, Hager GL, Chambon P, Losson R (2003) NSD1 is essential for early post- implantation development and has a catalytically active SET domain. EMBO J 22(12):3153–3163

    Article  Google Scholar 

  • Sattler M, Schleucher J, Griesinger C (1999) Heteronuclear multidimensional NMR experiments for the structure determination of proteins in solution employing pulsed field gradients. Prog NMR Spectrosc 34(2):93–158

    Article  Google Scholar 

  • Tonon G, Wong K-K, Maulik G, Brennan C, Feng B, Zhang Y, Khatry DB, Protopopov A, You MJ, Aguirre AJ, Martin ES, Yang Z, Ji H, Chin L, de Pinho RA (2005) High-resolution genetic profiles of lung cancer. Proc Natl Acad Sci 102(27):9625–9630

  • Varier RA, Timmers HT (2011) Histone lysine methylation and demethylation pathways in cancer. Biochim Biophys Acta, Rev Cancer 1815(1):75–89

    Article  Google Scholar 

  • Vranken WF, Boucher W, Stevens TJ, Fogh RH, Pajon A, Llinas M, Ulrich EL, Markley JL, Ionides J, Laue ED (2005) The CCPN Data Model for NMR Spectroscopy: development of a software pipeline. Proteins 59:687–696

  • Wang GG, Cai L, Pasillas MP, Kamps MP (2007) NUP98-NSD1 links H3K36 methylation to Hox-A gene activation and leukaemogenesis. Nat Cell Biol 9(7):804–812

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glyn Williams.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amin, N., Nietlispach, D., Qamar, S. et al. NMR backbone resonance assignment and solution secondary structure determination of human NSD1 and NSD2. Biomol NMR Assign 10, 315–320 (2016). https://doi.org/10.1007/s12104-016-9691-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12104-016-9691-x

Keywords

Navigation