Skip to main content
Log in

NMR assignments of the N-terminal domain of Ogataea polymorpha telomerase reverse transcriptase

Biomolecular NMR Assignments Aims and scope Submit manuscript

Cite this article

Abstract

Telomerase is a ribonucleoprotein enzyme that adds telomeric DNA fragments to the ends of chromosomes. This enzyme is the focus of substantial attention, both because its structure and mechanism of action are still poorly studied, and because of its pivotal roles in aging and cellular proliferation. The use of telomerase as a potential target for the design of new anticancer drugs is also of great interest. The catalytic protein subunit of telomerase (TERT) contains an N-terminal domain (TEN) that is essential for activity and processivity. Elucidation of the structure and dynamics of TEN in solution is important for understanding the molecular mechanism of telomerase activity and for the design of new telomerase inhibitors. To approach this problem, in this study we report the 1H, 13C, and 15N chemical shift assignments of TEN from Ogataea polymorpha. Analysis of the assigned chemical shifts allowed us to identify secondary structures and protein regions potentially involved in interaction with other participants of the telomerase catalytic cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

IPTG:

Isopropyl-thio-β-d-galactoside

TEN:

Telomerase N-terminal domain

TER:

Telomerase RNA

TERT:

Telomerase reverse transcriptase subunit

TEV:

Tobacco Etch Virus nuclear-inclusion-a endopeptidase

References

  • Akiyama BM, Parks JW, Stone MD (2015) The telomerase essential N-terminal domain promotes DNA synthesis by stabilizing short RNA–DNA hybrids. Nucleic Acids Res 43:5537–5549. doi:10.1093/nar/gkv406

    Article  Google Scholar 

  • Armanios MY et al (2007) Telomerase mutations in families with idiopathic pulmonary fibrosis. New Engl J Med 356:1317–1326. doi:10.1056/Nejmoa066157

    Article  Google Scholar 

  • Beattie TL, Zhou W, Robinson MO, Harrington L (1998) Reconstitution of human telomerase activity in vitro. Curr Biol: CB 8:177–180

    Article  Google Scholar 

  • Berjanskii MV, Wishart DS (2005) A simple method to predict protein flexibility using secondary chemical shifts. J Am Chem Soc 127:14970–14971. doi:10.1021/ja054842f

    Article  Google Scholar 

  • Blackburn EH, Collins K (2011) Telomerase: an RNP enzyme synthesizes DNA. Cold Spring Harb Perspect Biol. doi:10.1101/cshperspect.a003558

    Google Scholar 

  • Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293

    Article  Google Scholar 

  • Gillis AJ, Schuller AP, Skordalakes E (2008) Structure of the Tribolium castaneum telomerase catalytic subunit TERT. Nature 455:633–637. doi:10.1038/nature07283

    Article  ADS  Google Scholar 

  • Harkisheimer M, Mason M, Shuvaeva E, Skordalakes E (2013) A motif in the vertebrate telomerase N-terminal linker of TERT contributes to RNA binding and telomerase activity and processivity. Structure 21:1870–1878. doi:10.1016/j.str.2013.08.013

    Article  Google Scholar 

  • Huang Y, Liang P, Liu D, Huang J, Songyang Z (2014) Telomere regulation in pluripotent stem cells. Protein Cell 5:194–202. doi:10.1007/s13238-014-0028-1

    Article  Google Scholar 

  • Jacobs SA, Podell ER, Cech TR (2006) Crystal structure of the essential N-terminal domain of telomerase reverse transcriptase. Nat Struct Mol Biol 13:218–225. doi:10.1038/nsmb1054

    Article  Google Scholar 

  • Kim NW et al (1994) Specific association of human telomerase activity with immortal cells and cancer. Science 266:2011–2015

    Article  ADS  Google Scholar 

  • Lai CK, Mitchell JR, Collins K (2001) RNA binding domain of telomerase reverse transcriptase. Mol Cell Biol 21:990–1000. doi:10.1128/MCB.21.4.990-1000.2001

    Article  Google Scholar 

  • Lingner J, Hughes TR, Shevchenko A, Mann M, Lundblad V, Cech TR (1997) Reverse transcriptase motifs in the catalytic subunit of telomerase. Science 276:561–567

    Article  Google Scholar 

  • Mitchell M, Gillis A, Futahashi M, Fujiwara H, Skordalakes E (2010) Structural basis for telomerase catalytic subunit TERT binding to RNA template and telomeric DNA. Nat Struct Mol Biol 17:513–518. doi:10.1038/nsmb.1777

    Article  Google Scholar 

  • O’Connor CM, Lai CK, Collins K (2005) Two purified domains of telomerase reverse transcriptase reconstitute sequence-specific interactions with RNA. J Biol Chem 280:17533–17539. doi:10.1074/jbc.M501211200

    Article  Google Scholar 

  • Ravin NV et al (2013) Genome sequence and analysis of methylotrophic yeast Hansenula polymorpha DL1. BMC Genomics 14:837. doi:10.1186/1471-2164-14-837

    Article  Google Scholar 

  • Rouda S, Skordalakes E (2007) Structure of the RNA-binding domain of telomerase: implications for RNA recognition and binding. Structure 15:1403–1412. doi:10.1016/j.str.2007.09.007

    Article  Google Scholar 

  • Ruden M, Puri N (2013) Novel anticancer therapeutics targeting telomerase. Cancer Treat Rev 39:444–456. doi:10.1016/j.ctrv.2012.06.007

    Article  Google Scholar 

  • Schmidt JC, Dalby AB, Cech TR (2014) Identification of human TERT elements necessary for telomerase recruitment to telomeres. eLife. doi:10.7554/eLife.03563

    Google Scholar 

  • Shen Y, Delaglio F, Cornilescu G, Bax A (2009) TALOS plus: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J Biomol NMR 44:213–223. doi:10.1007/s10858-009-9333-z

    Article  Google Scholar 

  • Smekalova EM, Petrova OA, Zvereva MI, Dontsova OA (2012) Hansenula polymorpha TERT: a telomerase catalytic subunit isolated in recombinant form with limited reverse transcriptase activity. Acta Naturae 4:70–73

    Google Scholar 

  • Smekalova EM et al (2013) Specific features of telomerase RNA from Hansenula polymorpha. RNA 19:1563–1574. doi:10.1261/rna.038612.113

    Article  Google Scholar 

  • Tsakiri KD et al (2007) Adult-onset pulmonary fibrosis caused by mutations in telomerase. Proc Natl Acad Sci USA 104:7552–7557. doi:10.1073/pnas.0701009104

    Article  ADS  Google Scholar 

  • Xu Y, He K, Goldkorn A (2011) Telomerase targeted therapy in cancer and cancer stem cells. Clin Adv Hematol Oncol 9:442–455

    Google Scholar 

  • Zvereva MI, Shcherbakova DM, Dontsova OA (2010) Telomerase: structure, functions, and activity regulation. Biochemistry (Moscow) 75:1563–1583. doi:10.1134/S0006297910130055

    Article  Google Scholar 

Download references

Acknowledgments

The Russian Science Foundation (Grant 14-14-00598) supported NMR studies. Russian Foundation for Basic Research (Grant 15-54-74005 EMBL_a) supported protein cloning, expression and purification. The authors are grateful for the opportunity to use the NMR facilities acquired with the support from the Russian Government Program of Competitive Growth of Kazan Federal University among World’s Leading Academic Centers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir I. Polshakov.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polshakov, V.I., Petrova, O.A., Parfenova, Y.Y. et al. NMR assignments of the N-terminal domain of Ogataea polymorpha telomerase reverse transcriptase. Biomol NMR Assign 10, 183–187 (2016). https://doi.org/10.1007/s12104-015-9663-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12104-015-9663-6

Keywords

Navigation