Skip to main content

Backbone and side chain chemical shift assignments of apolipophorin III from Galleria mellonella


Apolipophorin III, a 163 residue monomeric protein from the greater wax moth Galleria mellonella (abbreviated as apoLp-IIIGM), has roles in upregulating expression of antimicrobial proteins as well as binding and deforming bacterial membranes. Due to its similarity to vertebrate apolipoproteins there is interest in performing atomic resolution analysis of apoLp-IIIGM as part of an effort to better understand its mechanism of action in innate immunity. In the first step towards structural characterization of apoLp-IIIGM, 99 % of backbone and 88 % of side chain 1H, 13C and 15N chemical shifts were assigned. TALOS+ analysis of the backbone resonances has predicted that the protein is composed of five long helices, which is consistent with the reported structures of apolipophorins from other insect species. The next stage in the characterization of apoLp-III from G. mellonella will be to utilize these resonance assignments in solving the solution structure of this protein.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2


  • Archer SJ, Ikura M, Torchia DA, Bax A (1991) An alternative 3D NMR technique for correlating backbone 15N with side chain Hβ resonances in larger proteins. J Magn Reson 95:636–641

    ADS  Google Scholar 

  • Breiter DR, Kanost MR, Benning MM, Wesenberg G, Law JH, Wells MA, Rayment I, Holden HM (1991) Molecular structure of an apolipoprotein determined at 2.5-A resolution. Biochemistry 30:603–608

    Article  Google Scholar 

  • Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPIPE: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293

    Article  Google Scholar 

  • Fan D, Zheng Y, Yang D, Wang J (2003) NMR solution structure and dynamics of an exchangeable apolipoprotein, Locusta migratoria apolipophorin III. J Biol Chem 278:21212–21220. doi:10.1074/jbc.M208486200

    Article  Google Scholar 

  • Gotz P, Weise C, Kopacek P, Losen S, Wiesner A (1997) Isolated apolipophorin III from Galleria mellonella stimulates the immune reactions of this insect. J Insect Physiol 43:383–391

    Article  Google Scholar 

  • Grzesiek S, Bax A (1993) Amino acid type determination in the sequential assignment procedure of uniformly 13C/15N-enriched proteins. J Biomol NMR 3:185–204

    Google Scholar 

  • Johnson BA (2004) Using NMRView to visualize and analyze the NMR spectra of macromolecules. Methods Mol Biol 278:313–352. doi:10.1385/1-59259-809-9:313

    Google Scholar 

  • Johnson BA (2013) NMRViewJ, v. 9.0. One Moon Scientific Inc, Newark

    Google Scholar 

  • Narayanaswami V, Kiss RS, Weers PM (2010) The helix bundle: a reversible lipid binding motif. Comp Biochem Physiol A Mol Integr Physiol 155:123–133. doi:10.1016/j.cbpa.2009.09.009

    Article  Google Scholar 

  • Niere M, Meisslitzer C, Dettloff M, Weise C, Ziegler M, Wiesner A (1999) Insect immune activation by recombinant Galleria mellonella apolipophorin III(1). Biochim Biophys Acta 1433:16–26

    Article  Google Scholar 

  • Oztug M, Martinon D, Weers PM (2012) Characterization of the apoLp-III/LPS complex: insight into the mode of binding interaction. Biochemistry 51:6220–6227. doi:10.1021/bi300619a

    Article  Google Scholar 

  • Panchal SC, Bhavesh NS, Hosur RV (2001) Improved 3D triple resonance experiments, HNN and HN(C)N, for HN and 15N sequential correlations in (13C, 15N) labeled proteins: application to unfolded proteins. J Biomol NMR 20:135–147

    Article  Google Scholar 

  • Shen Y, Delaglio F, Cornilescu G, Bax A (2009) TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J Biomol NMR 44:213–223. doi:10.1007/s10858-009-9333-z

    Article  Google Scholar 

  • UniProt C (2015) UniProt: a hub for protein information. Nucleic Acids Res 43:D204–D212. doi:10.1093/nar/gku989

    Article  Google Scholar 

  • Van der Horst DJ, Rodenburg KW (2010) Locust flight activity as a model for hormonal regulation of lipid mobilization and transport. J Insect Physiol 56:844–853. doi:10.1016/j.jinsphys.2010.02.015

    Article  Google Scholar 

  • Wang J, Sykes BD, Ryan RO (2002) Structural basis for the conformational adaptability of apolipophorin III, a helix-bundle exchangeable apolipoprotein. Proc Natl Acad Sci USA 99:1188–1193. doi:10.1073/pnas.032565999

    ADS  Article  Google Scholar 

  • Weers PM, Ryan RO (2006) Apolipophorin III: role model apolipoprotein. Insect Biochem Mol Biol 36:231–240. doi:10.1016/j.ibmb.2006.01.001

    Article  Google Scholar 

  • Weise C, Franke P, Kopacek P, Wiesner A (1998) Primary structure of apolipophorin-III from the greater wax moth, Galleria mellonella. J Protein Chem 17:633–641

    Article  Google Scholar 

  • Zdybicka-Barabas A, Cytryńska M (2013) Apolipophorins and insects immune response. Inv Surv J 10:58–68

    Google Scholar 

  • Zdybicka-Barabas A, Staczek S, Mak P, Skrzypiec K, Mendyk E, Cytryńska M (2013) Synergistic action of Galleria mellonella apolipophorin III and lysozyme against Gram-negative bacteria. Biochim Biophys Acta 1828:1449–1456. doi:10.1016/j.bbamem.2013.02.004

    Article  Google Scholar 

  • Zhang O, Kay LE, Olivier JP, Forman-Kay JD (1994) Backbone 1H and 15N resonance assignments of the N-terminal SH3 domain of drk in folded and unfolded states using enhanced-sensitivity pulsed field gradient NMR techniques. J Biomol NMR 4:845–858

    Article  Google Scholar 

Download references


Research reported in this publication was supported by the National Institute of General Medical Sciences of the National Institutes of Health (Award Number SC3GM089564 to PMMW), and by a Major Research Instrumentation grant for a 600 MHz NMR spectrometer provided by the National Science Foundation (Award Number CHE-1040134 to KAC).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Karin A. Crowhurst.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest in the publication of this manuscript.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Crowhurst, K.A., Horn, J.V. & Weers, P.M. Backbone and side chain chemical shift assignments of apolipophorin III from Galleria mellonella . Biomol NMR Assign 10, 143–147 (2016).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Apolipophorin III
  • Exchangeable apolipoprotein
  • apoLp-III
  • Galleria mellonella
  • NMR
  • Chemical shift assignment