Advertisement

Biomolecular NMR Assignments

, Volume 10, Issue 1, pp 143–147 | Cite as

Backbone and side chain chemical shift assignments of apolipophorin III from Galleria mellonella

  • Karin A. CrowhurstEmail author
  • James V.C. Horn
  • Paul M.M. Weers
Article

Abstract

Apolipophorin III, a 163 residue monomeric protein from the greater wax moth Galleria mellonella (abbreviated as apoLp-IIIGM), has roles in upregulating expression of antimicrobial proteins as well as binding and deforming bacterial membranes. Due to its similarity to vertebrate apolipoproteins there is interest in performing atomic resolution analysis of apoLp-IIIGM as part of an effort to better understand its mechanism of action in innate immunity. In the first step towards structural characterization of apoLp-IIIGM, 99 % of backbone and 88 % of side chain 1H, 13C and 15N chemical shifts were assigned. TALOS+ analysis of the backbone resonances has predicted that the protein is composed of five long helices, which is consistent with the reported structures of apolipophorins from other insect species. The next stage in the characterization of apoLp-III from G. mellonella will be to utilize these resonance assignments in solving the solution structure of this protein.

Keywords

Apolipophorin III Exchangeable apolipoprotein apoLp-III Galleria mellonella NMR Chemical shift assignment 

Notes

Acknowledgments

Research reported in this publication was supported by the National Institute of General Medical Sciences of the National Institutes of Health (Award Number SC3GM089564 to PMMW), and by a Major Research Instrumentation grant for a 600 MHz NMR spectrometer provided by the National Science Foundation (Award Number CHE-1040134 to KAC).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest in the publication of this manuscript.

References

  1. Archer SJ, Ikura M, Torchia DA, Bax A (1991) An alternative 3D NMR technique for correlating backbone 15N with side chain Hβ resonances in larger proteins. J Magn Reson 95:636–641ADSGoogle Scholar
  2. Breiter DR, Kanost MR, Benning MM, Wesenberg G, Law JH, Wells MA, Rayment I, Holden HM (1991) Molecular structure of an apolipoprotein determined at 2.5-A resolution. Biochemistry 30:603–608CrossRefGoogle Scholar
  3. Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPIPE: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293CrossRefGoogle Scholar
  4. Fan D, Zheng Y, Yang D, Wang J (2003) NMR solution structure and dynamics of an exchangeable apolipoprotein, Locusta migratoria apolipophorin III. J Biol Chem 278:21212–21220. doi: 10.1074/jbc.M208486200 CrossRefGoogle Scholar
  5. Gotz P, Weise C, Kopacek P, Losen S, Wiesner A (1997) Isolated apolipophorin III from Galleria mellonella stimulates the immune reactions of this insect. J Insect Physiol 43:383–391CrossRefGoogle Scholar
  6. Grzesiek S, Bax A (1993) Amino acid type determination in the sequential assignment procedure of uniformly 13C/15N-enriched proteins. J Biomol NMR 3:185–204Google Scholar
  7. Johnson BA (2004) Using NMRView to visualize and analyze the NMR spectra of macromolecules. Methods Mol Biol 278:313–352. doi: 10.1385/1-59259-809-9:313 Google Scholar
  8. Johnson BA (2013) NMRViewJ, v. 9.0. One Moon Scientific Inc, NewarkGoogle Scholar
  9. Narayanaswami V, Kiss RS, Weers PM (2010) The helix bundle: a reversible lipid binding motif. Comp Biochem Physiol A Mol Integr Physiol 155:123–133. doi: 10.1016/j.cbpa.2009.09.009 CrossRefGoogle Scholar
  10. Niere M, Meisslitzer C, Dettloff M, Weise C, Ziegler M, Wiesner A (1999) Insect immune activation by recombinant Galleria mellonella apolipophorin III(1). Biochim Biophys Acta 1433:16–26CrossRefGoogle Scholar
  11. Oztug M, Martinon D, Weers PM (2012) Characterization of the apoLp-III/LPS complex: insight into the mode of binding interaction. Biochemistry 51:6220–6227. doi: 10.1021/bi300619a CrossRefGoogle Scholar
  12. Panchal SC, Bhavesh NS, Hosur RV (2001) Improved 3D triple resonance experiments, HNN and HN(C)N, for HN and 15N sequential correlations in (13C, 15N) labeled proteins: application to unfolded proteins. J Biomol NMR 20:135–147CrossRefGoogle Scholar
  13. Shen Y, Delaglio F, Cornilescu G, Bax A (2009) TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J Biomol NMR 44:213–223. doi: 10.1007/s10858-009-9333-z CrossRefGoogle Scholar
  14. UniProt C (2015) UniProt: a hub for protein information. Nucleic Acids Res 43:D204–D212. doi: 10.1093/nar/gku989 CrossRefGoogle Scholar
  15. Van der Horst DJ, Rodenburg KW (2010) Locust flight activity as a model for hormonal regulation of lipid mobilization and transport. J Insect Physiol 56:844–853. doi: 10.1016/j.jinsphys.2010.02.015 CrossRefGoogle Scholar
  16. Wang J, Sykes BD, Ryan RO (2002) Structural basis for the conformational adaptability of apolipophorin III, a helix-bundle exchangeable apolipoprotein. Proc Natl Acad Sci USA 99:1188–1193. doi: 10.1073/pnas.032565999 ADSCrossRefGoogle Scholar
  17. Weers PM, Ryan RO (2006) Apolipophorin III: role model apolipoprotein. Insect Biochem Mol Biol 36:231–240. doi: 10.1016/j.ibmb.2006.01.001 CrossRefGoogle Scholar
  18. Weise C, Franke P, Kopacek P, Wiesner A (1998) Primary structure of apolipophorin-III from the greater wax moth, Galleria mellonella. J Protein Chem 17:633–641CrossRefGoogle Scholar
  19. Zdybicka-Barabas A, Cytryńska M (2013) Apolipophorins and insects immune response. Inv Surv J 10:58–68Google Scholar
  20. Zdybicka-Barabas A, Staczek S, Mak P, Skrzypiec K, Mendyk E, Cytryńska M (2013) Synergistic action of Galleria mellonella apolipophorin III and lysozyme against Gram-negative bacteria. Biochim Biophys Acta 1828:1449–1456. doi: 10.1016/j.bbamem.2013.02.004 CrossRefGoogle Scholar
  21. Zhang O, Kay LE, Olivier JP, Forman-Kay JD (1994) Backbone 1H and 15N resonance assignments of the N-terminal SH3 domain of drk in folded and unfolded states using enhanced-sensitivity pulsed field gradient NMR techniques. J Biomol NMR 4:845–858CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Karin A. Crowhurst
    • 1
    Email author
  • James V.C. Horn
    • 2
  • Paul M.M. Weers
    • 2
  1. 1.Department of Chemistry and BiochemistryCalifornia State University NorthridgeNorthridgeUSA
  2. 2.Department of Chemistry and BiochemistryCalifornia State University Long BeachLong BeachUSA

Personalised recommendations