Advertisement

Biomolecular NMR Assignments

, Volume 9, Issue 2, pp 293–297 | Cite as

NMR resonance assignments of the lantibiotic immunity protein NisI from Lactococcus lactis

  • Carolin Hacker
  • Nina Alexandra Christ
  • Elke Duchardt-Ferner
  • Sophie Korn
  • Lucija Berninger
  • Peter Kötter
  • Karl-Dieter Entian
  • Jens WöhnertEmail author
Article

Abstract

The lantibiotic nisin is a small antimicrobial peptide which acts against a wide range of Gram-positive bacteria. Nisin-producing Lactococcus lactis strains express four genes for self-protection against their own antimicrobial compound. This immunity system consists of the lipoprotein NisI and the ABC transporter NisFEG. NisI is attached to the outside of the cytoplasmic membrane via a covalently linked diacylglycerol anchor. Both the lipoprotein and the ABC transporter are needed for full immunity but the exact immunity mechanism is still unclear. To gain insights into the highly specific immunity mechanism of nisin producing strains on a structural level we present here the backbone resonance assignment of NisI (25.8 kDa) as well as the virtually complete 1H,15N,13C chemical shift assignments for the isolated 12.7 kDa N-terminal and 14.6 kDa C-terminal domains of NisI.

Keywords

NMR-assignments Triple resonance experiments NisI Lantibiotic immunity Lantibiotic Lanthipeptide Nisin 

Notes

Acknowledgments

We thank Prof. Volker Dötsch for the kind gift of the TEV protease construct.This project was supported by the DFG (Wo 901/4-1 to J.W. and En 134/11-1 to K.-D.E.), an Aventis Foundation professorship (to J.W.) and the Center of Biomolecular Magnetic Resonance (BMRZ) at the Goethe University Frankfurt am Main.

Supplementary material

12104_2015_9595_MOESM1_ESM.docx (26 kb)
Supplementary material 1 (DOCX 25 kb)

References

  1. Bierbaum G, Sahl HG (2009) Lantibiotics: mode of action, biosynthesis and bioengineering. Curr Pharm Biotechnol 10:2–18CrossRefGoogle Scholar
  2. Breukink E, Wiedemann I, van Kraaij C, Kuipers OP, Sahl H, de Kruijff B (1999) Use of the cell wall precursor lipid II by a pore-forming peptide antibiotic. Science 286:2361–2364CrossRefGoogle Scholar
  3. Brötz H, Josten M, Wiedemann I, Schneider U, Gotz F, Bierbaum G, Sahl HG (1988) Role of lipid-bound peptidoglycan precursors in the formation of pores by nisin, epidermin and other lantibiotics. Mol Microbiol 30:317–327CrossRefGoogle Scholar
  4. Christ NA, Duchardt-Ferner E, Düsterhus S, Kötter P, Entian KD, Wöhnert J (2012a) NMR resonance assignment of the autoimmunity protein SpaI from Bacillus subtilis ATCC 6633. Biomol NMR Assign 6:9–13CrossRefGoogle Scholar
  5. Christ NA, Bochmann S, Gottstein D, Duchardt-Ferner E, Hellmich UA, Düsterhus S, Kütter P, Güntert P, Entian K, Wöhnert J (2012b) The first structure of a lantibiotic immunity protein, SpaI from Bacillus subtilis, reveals a novel fold. J Biol Chem 287:35286–35298CrossRefGoogle Scholar
  6. Farrow NA, Muhandiram R, Singer AU, Pascal SM, Kay CM, Gish G et al (1994) Backbone dynamics of a free and phosphopeptide-complexed Src homology 2 domain studied by 15 N NMR relaxation. Biochemistry 33:5984–6003CrossRefGoogle Scholar
  7. Hasper HE, Kramer NE, Smith JL, Hillman JD, Zachariah C, Kuipers OP, de Kruijff B, Breukink E (2006) An alternative bactericidal mechanism of action for lantibiotic peptides that target lipid II. Science 313:1636–1637CrossRefADSGoogle Scholar
  8. Hsu SD, Breukink E, Tischenko E, Lutters MAG, de Kruijff B, Kaptein R, Bonvin AMJJ, van Nuland NAJ (2004) The nisin–lipid II complex reveals a pyrophosphate cage that provides a blueprint for novel antibiotics. Nat Struct Mol Biol 11:963–967CrossRefGoogle Scholar
  9. Keller R (2004) The Computer Aided Resonance Tutorial. CANTINA Verlag, GoldauGoogle Scholar
  10. Klein C, Entian KD (1994) Genes involved in self-protection against the lantibiotic subtilin produced by Bacillus subtilis ATCC 6633. Appl Environ Microbiol 60:2793–2801Google Scholar
  11. Koponen O, Takala TM, Saarela U, Qiao M, Saris PEJ (2004) Distribution of the NisI immunity protein and enhancement of nisin activity by the lipid-free NisI. FEMS Microbiol Lett 231:85–90CrossRefGoogle Scholar
  12. Kuipers OP, Beerthuyzen MM, Siezen RJ, De Vos WM (1993) Characterization of the nisin gene cluster nisABTCIPR of Lactococcus lactis. Requirement of expression of the nisA and nisI genes for development of immunity. Eur J Biochem 216:281–291CrossRefGoogle Scholar
  13. Markley JL, Bax A, Arata Y, Hilbers CW, Kaptein R, Sykes BD, Wright PE, Wüthrich K (1998) Recommendations for the presentation of NMR structures of proteins and nucleic acids. IUPAC-IUBMB-IUPAB inter-union task group on the standardization of data bases of protein and nucleic acid structures determined by NMR spectroscopy. J Biomol NMR 12:1–23CrossRefGoogle Scholar
  14. Muchmore DC, McIntosh LP, Russell CB, Anderson de, Dahlquist FW (1989) Expression and nitrogen-15 labeling of proteins for proton and nitrogen-15 nuclear magnetic resonance. Methods Enzymol 177:44–73Google Scholar
  15. Qiao M, Immonen T, Koponen O, Saris PE (1995) The cellular location and effect on nisin immunity of the NisI protein from Lactococcus lactis N8 expressed in Escherichia coli and L. lactis. FEMS Microbiol Lett 131:75–80CrossRefGoogle Scholar
  16. Rogers LA (1928) The inhibiting effect of Streptococcus lactis on Lactobacillus bulgaricus. J Bacteriol 16:321–325Google Scholar
  17. Salzmann M, Pervushin K, Wider G, Senn H, Wüthrich K (1998) TROSY in triple-resonance experiments: new perspectives for sequential NMR assignment of large proteins. Proc Natl Acad Sci USA 95:13585–13590CrossRefADSGoogle Scholar
  18. Sattler M, Schleucher J, Griesinger C (1999) Heteronuclear multidimensional NMR experiments for the structure determination of proteins in solution employing pulsed field gradients. Prog Nucl Magn Reson Spectrosc 34:93–158CrossRefGoogle Scholar
  19. Schnell N, Entian KD, Schneider U, Götz F, Zähner H, Kellner R, Jung G (1988) Prepeptide sequence of epidermin, a ribosomally synthesized antibiotic with four sulphide-rings. Nature 333:276–278CrossRefADSGoogle Scholar
  20. Shen Y, Bax A (2010) Prediction of Xaa-Pro peptide bond conformation from sequence and chemical shifts. J Biomol NMR 46:199–204CrossRefGoogle Scholar
  21. Shen Y, Bax A (2013) Protein backbone and sidechain torsion angles predicted from NMR  chemical shifts using artificial neural networks. J Biomol NMR 56:227–241Google Scholar
  22. Siegers K, Entian KD (1995) Genes involved in immunity to the lantibiotic nisin produced by Lactococcus lactis 6F3. Appl Environ Microbiol 61:1082–1089Google Scholar
  23. Stein T, Heinzmann S, Solovieva I, Entian K (2003) Function of Lactococcus lactis nisin immunity genes nisI and nisFEG after coordinated expression in the surrogate host Bacillus subtilis. J Biol Chem 278:89–94CrossRefGoogle Scholar
  24. Takala TM, Koponen O, Qiao M, Saris PE (2004) Lipid-free NisI: interaction with nisin and contribution to nisin immunity via secretion. FEMS Microbiol Lett 237:171–177CrossRefGoogle Scholar
  25. Vranken WF, Boucher W, Stevens TJ, Fogh RH, Pajon A, Llinas M et al (2005) The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins 59:687–696CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Carolin Hacker
    • 1
    • 2
  • Nina Alexandra Christ
    • 1
    • 2
  • Elke Duchardt-Ferner
    • 1
    • 2
  • Sophie Korn
    • 1
  • Lucija Berninger
    • 1
  • Peter Kötter
    • 1
  • Karl-Dieter Entian
    • 1
  • Jens Wöhnert
    • 1
    • 2
    Email author
  1. 1.Institut für Molekulare BiowissenschaftenJohann-Wolfgang-Goethe-Universität Frankfurt/M.FrankfurtGermany
  2. 2.Center for Biomolecular Magnetic Resonance (BMRZ)Johann-Wolfgang-Goethe-Universität Frankfurt/M.FrankfurtGermany

Personalised recommendations