Skip to main content

Backbone and stereospecific 13C methyl Ile (δ1), Leu and Val side-chain chemical shift assignments of Crc

Abstract

Carbon catabolite repression (CCR) allows bacteria to selectively assimilate a preferred compound among a mixture of several potential carbon sources, thus boosting growth and economizing the cost of adaptability to variable nutrients in the environment. The RNA-binding catabolite repression control (Crc) protein acts as a global post-transcriptional regulator of CCR in Pseudomonas species. Crc triggers repression by inhibiting the expression of genes involved in transport and catabolism of non-preferred substrates, thus indirectly favoring assimilation of preferred one. We report here a nearly complete backbone and stereospecific 13C methyl side-chain chemical shift assignments of Ile (δ1), Leu and Val of Crc (~ 31 kDa) from Pseudomonas syringae Lz4W.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  • Gardner KH, Kornat DR, Rosen MK, Kay LE (1996) An (H)C(CO)NH-TOCSY pulse scheme for sequential assignment of protonated methyl groups in an otherwise deuterated 15N,13C-labeled proteins. J Biomol NMR 8:351–356

    Article  Google Scholar 

  • Goddard TD and Kneller DG (2008) SPARKY 3, http://www.cgl.ucsf.edu/home/sparky University of California, San Francisco

  • Görke B, Stülke J (2008) Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat Rev Microbiol 6:612–624

    Google Scholar 

  • Goto NK, Gardner KH, Mueller GA, Willis RC, Kay LE (1999) A robust and cost-effective method for the production of Val, Leu, Ile(δ1) methyl-protonated 15N-,13C-,2H labeled proteins. J Biomol NMR 13:369–374

    Article  Google Scholar 

  • Keller R (2004) The computer aided resonance assignment tutorial. ISBN 3-85600-112-3

  • Linares JF, Moreno R, Fajardo A, Martínez-Solano L, Escalante R, Rojo F, Martínez JL (2010) The global regulator Crc modulates metabolism, susceptibility to antibiotics and virulence in Pseudomonas aeruginosa. Environ Microbiol 12:3196–3212

    Article  Google Scholar 

  • Loria JP, Rance M, Palmer AG (1999) Transverse-relaxation-optimized (TROSY) gradient-enhanced triple-resonance NMR spectroscopy. J Magn Reson 141(1):180–184

    Article  ADS  Google Scholar 

  • Milojevic T, Grishkovskaya I, Sonnleitner E, Djinovic-Carugo K, Bläsi U (2013) The Pseudomonas aeruginosa catabolite repression control Protein, Crc, is devoid of RNA binding activity. PLoS ONE 8(5):e64609

    Article  ADS  Google Scholar 

  • Moreno R, Marzi S, Romby P, Rojo F (2009) The Crc global regulator binds to an unpaired A-rich motif at the Pseudomonas putida alkS mRNA coding sequence and inhibits translation initiation. Nucleic Acids Res 37(22):7678–7690

    Article  Google Scholar 

  • Moreno R, Fonseca P, Rojo F (2011) Two small RNAs, CrcY and CrcZ, act in concert to sequester the Crc global regulator in Pseudomonas putida, modulating catabolite repression. Mol Microbiol 83(1):24–40

    Article  Google Scholar 

  • Muhandiram DR, Xu GY, Kay LE (1993) An enhanced-sensitivity pure absorption gradient 4D 15N, 13C-edited NOESY experiment. J Biomol NMR 3:463–470

    Article  Google Scholar 

  • Neri D, Szyperski T, Otting G, Senn H, Wüthrich K (1989) Stereospecific nuclear magnetic resonance assignments of the methyl groups of valine and leucine in the DNA-binding domain of the 434 repressor by biosynthetically directed fractional 13C labeling. Biochemistry 28:7510–7516

    Article  Google Scholar 

  • Pandiyan A, Ray MK (2013) Draft genome sequence of the Antarctic psychrophilic bacterium Pseudomonas syringae strain Lz4W. Genome Announc 1(3):e00377-13

    Google Scholar 

  • Rojo F (2010) Carbon catabolite repression in Pseudomonas: optimizing metabolic versatility and interactions with the environment. FEMS Microbiol Rev 34:658–684

    Google Scholar 

  • Sahu B, Ray MK (2008) Auxotrophy in natural isolate: minimal requirements for growth of the Antarctic psychrotrophic bacterium Pseudomonas syringae Lz4W. J Basic Microbiol 48:38–47

    Article  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. CSH Press, Cold Spring Harbor

    Google Scholar 

  • Sonnleitner E, Abdou L, Haas D (2009) Small RNA as global regulator of carbon catabolite repression in Pseudomonas aeruginosa. Proc Natl Acad Sci USA 106(51):21866–21871

    Article  ADS  Google Scholar 

  • Wei Y, Zhang H, Gao ZQ, Xu JH, Liu QS, Dong YH (2013) Structural analysis of global metabolic regulator Crc from Pseudomons aeruginosa. IUBMB Life 65(1):50–57

    Article  Google Scholar 

  • Wishart DS, Sykes BD (1994) The 13C chemical shift index: a simple method for the identification of protein secondary structure using 13C chemical shift data. J Biomol NMR 4:171–180

    Article  Google Scholar 

  • Wishart DS, Bigam CG, Yao J, Abildgaard F, Dyson JH, Oldfield E, Markley JL, Sykes BD (1995) 1H, 13C and 15N chemical shift referencing in biomolecular NMR. J Biomol NMR 6:135–140

    Article  Google Scholar 

  • Wolff JA, MacGregor CH, Eisenberg RC, Phibbs PV Jr (1991) Isolation and characterization of catabolite repression control mutants of Pseudomonas aeruginosa PAO. J Bacteriol 173(15):4700–4706

    Google Scholar 

Download references

Acknowledgments

Authors acknowledge Ms. V. Aarti and central instrumentation facility of CCMB for assisting and facilitating various experiments. R.S. and B.S. acknowledge research fellowships from Council of Scientific and Industrial Research (CSIR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mandar V. Deshmukh.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sharma, R., Sahu, B., Ray, M.K. et al. Backbone and stereospecific 13C methyl Ile (δ1), Leu and Val side-chain chemical shift assignments of Crc. Biomol NMR Assign 9, 75–79 (2015). https://doi.org/10.1007/s12104-014-9548-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12104-014-9548-0

Keywords

  • Crc
  • RNA binding protein
  • Carbon catabolite repression (CCR)
  • Pseudomonas syringae