Advertisement

Biomolecular NMR Assignments

, Volume 8, Issue 2, pp 375–378 | Cite as

Backbone 1H, 15N, 13C and side chain 13Cβ NMR chemical shift assignment of murine interleukin-10

  • Georg Künze
  • Stephan Theisgen
  • Daniel Huster
Article

Abstract

Almost complete assignment of backbone 1H, 13C, 15N and side chain 13Cβ resonances for the immune-regulatory cytokine IL-10 is reported. The protein was overexpressed in Escherichia coli and was refolded from inclusion bodies. The point mutation C149Y was introduced to suppress incorrect disulfide bond formation and to improve protein refolding.

Keywords

Cytokine Autoimmunity NMR Protein-carbohydrate-interaction 

Notes

Acknowledgments

We thank Sebastian Lanvermann (Technical University Dresden) who provided the IL-10 cDNA and Professors Stefan Berger (University of Leipzig) and Jochen Balbach (Martin Luther University Halle/Wittenberg) who kindly provided access to their NMR spectrometers. The study was supported by a grant from the Deutsche Forschungsgemeinschaft (Transregio 67, A6) and a grant from the Stipendienfonds der Chemischen Industrie e.V.

References

  1. Angulo J, Rademacher C, Biet T, Benie AJ, Blume A, Peters H, Palcic M, Parra F, Peters T (2006) NMR analysis of carbohydrate–protein interactions. Meth Enzymol 416:12–30CrossRefGoogle Scholar
  2. Asadullah K, Sterry W, Volk HD (2003) Interleukin-10 therapy—review of a new approach. Pharmacol Rev 55:241–269CrossRefGoogle Scholar
  3. Ball C, Vigues S, Gee CK, Poole S, Bristow AF (2001) Rat interleukin-10: production and characterisation of biologically active protein in a recombinant bacterial expression system. Eur Cytokine Netw 12:187–193Google Scholar
  4. Bortesi L, Rossato M, Schuster F, Raven N, Stadlmann J, Avesani L, Falorni A, Bazzoni F, Bock R, Schillberg S, Pezzotti M (2009) Viral and murine interleukin-10 are correctly processed and retain their biological activity when produced in tobacco. BMC Biotechnol 9:22–35CrossRefGoogle Scholar
  5. Coombe DR (2008) Biological implications of glycosaminoglycan interactions with haemopoietic cytokines. Immunol Cell Biol 86:598–607CrossRefGoogle Scholar
  6. de Waal MR, Yssel H, Roncarolo MG, Spits H, de Vries JE (1992) Interleukin-10. Curr Opin Immunol 4:314–320CrossRefGoogle Scholar
  7. Gandhi NS, Mancera RL (2008) The structure of glycosaminoglycans and their interactions with proteins. Chem Biol Drug Des 72:455–482CrossRefGoogle Scholar
  8. Grzesiek S, Dobeli H, Gentz R, Garotta G, Labhardt AM, Bax A (1992) 1H, 13C, and 15N NMR backbone assignments and secondary structure of human interferon-gamma. Biochemistry 31:8180–8190CrossRefGoogle Scholar
  9. Kim JM, Brannan CI, Copeland NG, Jenkins NA, Khan TA, Moore KW (1992) Structure of the mouse IL-10 gene and chromosomal localization of the mouse and human genes. J Immunol 148:3618–3623Google Scholar
  10. Moore KW, Vieira P, Fiorentino DF, Trounstine ML, Khan TA, Mosmann TR (1990) Homology of cytokine synthesis inhibitory factor (IL-10) to the Epstein–Barr virus gene BCRFI. Science 248:1230–1234ADSCrossRefGoogle Scholar
  11. Moore KW, O’Garra A, de Waal MR, Vieira P, Mosmann TR (1993) Interleukin-10. Annu Rev Immunol 11:165–190CrossRefGoogle Scholar
  12. Moore KW, de Waal MR, Coffman RL, O’Garra A (2001) Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 19:683–765CrossRefGoogle Scholar
  13. Peattie RA (2012) Release of growth factors, cytokines and therapeutic molecules by hyaluronan-based hydrogels. Curr Pharm Biotechnol 13:1299–1305CrossRefGoogle Scholar
  14. Roers A, Müller W (2008) Distinct functions of interleukin-10 derived from different cellular sources. Curr Immunol Rev 4:37–42CrossRefGoogle Scholar
  15. Sabat R, Grutz G, Warszawska K, Kirsch S, Witte E, Wolk K, Geginat J (2010) Biology of interleukin-10. Cytokine Growth Factor Rev 21:331–344CrossRefGoogle Scholar
  16. Salek-Ardakani S, Arrand JR, Shaw D, Mackett M (2000) Heparin and heparan sulfate bind interleukin-10 and modulate its activity. Blood 96:1879–1888Google Scholar
  17. Schiller J, Huster D (2012) New methods to study the composition and structure of the extracellular matrix in natural and bioengineered tissues. Biomatter 2:115–131CrossRefGoogle Scholar
  18. Schultz GS, Wysocki A (2009) Interactions between extracellular matrix and growth factors in wound healing. Wound Repair Regen 17:153–162CrossRefGoogle Scholar
  19. Shen Y, Delaglio F, Cornilescu G, Bax A (2009) TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J Biomol NMR 44:213–223CrossRefGoogle Scholar
  20. Spera S, Bax A (1991) Empirical correlation between protein backbone conformation and Cα and Cβ 13C nuclear magnetic resonance chemical shifts. J Am Chem Soc 113:5490–5492CrossRefGoogle Scholar
  21. Windsor WT, Syto R, Tsarbopoulos A, Zhang R, Durkin J, Baldwin S, Paliwal S, Mui PW, Pramanik B, Trotta PP (1993) Disulfide bond assignments and secondary structure analysis of human and murine interleukin 10. Biochemistry 32:8807–8815CrossRefGoogle Scholar
  22. Wishart DS, Bigam CG, Holm A, Hodges RS, Sykes BD (1995a) 1H, 13C and 15N random coil NMR chemical shifts of the common amino acids. I. Investigations of nearest-neighbor effects. J Biomol NMR 5:67–81CrossRefGoogle Scholar
  23. Wishart DS, Bigam CG, Yao J, Abildgaard F, Dyson HJ, Oldfield E, Markley JL, Sykes BD (1995b) 1H, 13C and 15N chemical shift referencing in biomolecular NMR. J Biomol NMR 6:135–140Google Scholar
  24. Zdanov A (2004) Structural features of the interleukin-10 family of cytokines. Curr Pharm Des 10:3873–3884CrossRefGoogle Scholar
  25. Zdanov A, Schalk-Hihi C, Gustchina A, Tsang M, Weatherbee J, Wlodawer A (1995) Crystal structure of interleukin-10 reveals the functional dimer with an unexpected topological similarity to interferon gamma. Structure 3:591–601CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Institute of Medical Physics and BiophysicsUniversity of LeipzigLeipzigGermany

Personalised recommendations