Biomolecular NMR Assignments

, Volume 8, Issue 2, pp 365–370 | Cite as

Solid-state NMR sequential assignments of the amyloid core of Sup35pNM

  • Nina Luckgei
  • Anne K. Schütz
  • Birgit Habenstein
  • Luc Bousset
  • Yannick Sourigues
  • Ronald MelkiEmail author
  • Beat H. MeierEmail author
  • Anja BöckmannEmail author


Sup35pNM represents the N-terminal and middle (M) domains of the yeast Saccharomyces cerevisiae prion Sup35p. This fragment is commonly used for structural and functional studies of Sup35p. We here present a solid-state NMR study of fibrils formed by this fragment and show that sequential assignments can be obtained for the rigid and well-ordered parts of the protein using 3D spectroscopy. We describe in detail the sequential assignment of the 22 residues yielding strong, narrow signals with chemical shifts that correspond mostly to β-sheet secondary-structured amino acids that form the fibril core.


Sup35pNM Fibrils Solid-state NMR Assignments Secondary structure 



We thank Dr. Christian Wasmer for help with recording the spectra. This work was supported by the Agence Nationale de la Recherche (ANR-12-BS08-0013-01), the ETH Zurich, the Swiss National Science Foundation (Grant 200020_124611) and the Centre National de la Recherche Scientifique. We also acknowledge support from the European Commission under the Seventh Framework Programme (FP7), contract Bio-NMR 261863.


  1. Böckmann A, Gardiennet C, Verel R, Hunkeler A, Loquet A, Pintacuda G, Emsley L, Meier BH, Lesage A (2009) Characterization of different water pools in solid-state NMR protein samples. J Biomol NMR 45(3):319–327CrossRefGoogle Scholar
  2. Chien P, Yonekura K, Weissman J (2005) Mechanism of cross-species prion transmission: an infectious conformation compatible with two highly divergent yeast prion proteins. Cell 121:49–62CrossRefGoogle Scholar
  3. Cox BS (1965) Psi, a cytoplasmic suppressor of super-suppressor in yeast. Heredity 20(4):505–521CrossRefGoogle Scholar
  4. DePace AH, Santoso A, Hillner P, Weissman JS (1998) A critical role for amino-terminal glutamine/asparagine repeats in the formation and propagation of a yeast prion. Cell 93(7):1241–1252CrossRefGoogle Scholar
  5. Fogh R, Ionides J, Ulrich E, Boucher W, Vranken W, Linge JP, Habeck M, Rieping W, Bhat TN, Westbrook J, Henrick K, Gilliland G, Berman H, Thornton J, Nilges M, Markley J, Laue E (2002) The CCPN project: an interim report on a data model for the NMR community. Nat Struct Biol 9(6):416–418CrossRefGoogle Scholar
  6. Foo CK, Ohhashi Y, Kelly MJS, Tanaka M, Weissman JS (2011) Radically different amyloid conformations dictate the seeding specificity of a chimeric Sup35 prion. J Mol Biol 408(1):1–8Google Scholar
  7. Glover JR, Kowal AS, Schirmer EC, Patino MM, Liu JJ, Lindquist S (1997) Self-seeded fibers formed by Sup35, the protein determinant of [PSI+], a heritable prion-like factor of S. cerevisiae. Cell 89(5):811–819CrossRefGoogle Scholar
  8. Habenstein B, Wasmer C, Bousset L, Sourigues Y, Schütz A, Loquet A, Meier BH, Melki R, Böckmann A (2011) Extensive de novo solid-state NMR assignments of the 33 kDa C-terminal domain of the Ure2 prion. J Biomol NMR 51(3):235–243CrossRefGoogle Scholar
  9. Halfmann R, Alberti S, Krishnan R, Lyle N, O’Donnell CW, Donnell CW, King OD, Berger B, Pappu RV, Lindquist S (2011) Opposing effects of glutamine and asparagine govern prion formation by intrinsically disordered proteins. Mol Cell 43(1):72–84CrossRefGoogle Scholar
  10. Krishnan R, Lindquist S (2005) Structural insights into a yeast prion illuminate nucleation and strain diversity. Nature 435(7043):765–772ADSCrossRefGoogle Scholar
  11. Krzewska J, Melki R (2006) Molecular chaperones and the assembly of the prion Sup35p, an in vitro study. EMBO J 25(4):822–833CrossRefGoogle Scholar
  12. Krzewska J, Tanaka M, Burston SG, Melki R (2007) Biochemical and functional analysis of the assembly of full-length Sup35p and its prion-forming domain. J Biol Chem 282(3):1679–1686CrossRefGoogle Scholar
  13. Luca S, Filippov D, van Boom J, Oschkinat H, de Groot H, Baldus M (2001) Secondary chemical shifts in immobilized peptides and proteins: a qualitative basis for structure refinement under magic angle spinning. J Biomol NMR 20(4):325–331CrossRefGoogle Scholar
  14. Luckgei N, Schütz AK, Bousset L, Habenstein B, Sourigues Y, Gardiennet C, Meier BH, Melki R, Böckmann A (2013) The conformation of the prion domain of Sup35p in isolation and in the full-length protein is different (under review)Google Scholar
  15. Schuetz A, Wasmer C, Habenstein B, Verel R, Greenwald J, Riek R, Böckmann A, Meier BH (2010) Protocols for the sequential solid-state NMR spectroscopic assignment of a uniformly labeled 25 kDa protein: HET-s (1-227). ChemBioChem 11(11):1543–1551CrossRefGoogle Scholar
  16. Schütz AK, Habenstein B, Luckgei N, Bousset L, Sourigues Y, Nielsen AB, Melki R, Böckmann A, Meier BH (2013) Solid-state NMR sequential assignments of the amyloid core of full-length Sup35p (submitted)Google Scholar
  17. Stevens TJ, Fogh RH, Boucher W, Higman VA, Eisenmenger F, Bardiaux B, van Rossum B-J, Oschkinat H, Laue ED (2011) A software framework for analysing solid-state MAS NMR data. J Biomol NMR 51(4):437–447CrossRefGoogle Scholar
  18. Toyama B, Kelly M, Gross J, Weissman J (2007) The structural basis of yeast prion strain variants. Nature 449(7159):233–237ADSCrossRefGoogle Scholar
  19. Verges KJ, Smith MH, Toyama BH, Weissman JS (2011) Strain conformation, primary structure and the propagation of the yeast prion [PSI+]. Nat Struct Mol Biol 18(4):493–499CrossRefGoogle Scholar
  20. Vranken W, Boucher W, Stevens T, Fogh R, Pajon A, Llinas P, Ulrich E, Markley J, Ionides J, Laue E (2005) The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins 59(4):687–696CrossRefGoogle Scholar
  21. Wang Y, Jardetzky O (2002) Probability-based protein secondary structure identification using combined NMR chemical-shift data. Protein Sci 11(4):852–861CrossRefGoogle Scholar
  22. Wickner RB, Masison DC, Edskes HK (1995) [PSI] and [URE3] as yeast prions. Yeast 11(16):1671–1685CrossRefGoogle Scholar
  23. Wishart DS, Sykes BD (1994) The 13C chemical-shift index: a simple method for the identification of protein secondary structure using 13C chemical-shift data. J Biomol NMR 4(2):171–180Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Institut de Biologie et Chimie des ProtéinesUMR 5086 CNRS/Université de LyonLyonFrance
  2. 2.Physical ChemistryETH ZürichZurichSwitzerland
  3. 3.Laboratoire d’Enzymologie et Biochimie StructuralesUPR 3082 CNRSGif-sur-YvetteFrance

Personalised recommendations