Skip to main content
Log in

Backbone and side-chain 1H, 13C and 15N resonance assignments of the OB domain of the single stranded DNA binding protein from Sulfolobus solfataricus and chemical shift mapping of the DNA-binding interface

  • Article
  • Published:
Biomolecular NMR Assignments Aims and scope Submit manuscript

Abstract

Single stranded DNA binding proteins (SSBs) are present in all known cellular organisms and are critical for DNA replication, recombination and repair. The SSB from the hyperthermophilic crenarchaeote Sulfolobus solfataricus (SsoSSB) has an unusual domain structure with a single DNA-binding oligonucleotide binding (OB) fold coupled to a flexible C-terminal tail. This ‘simple’ domain organisation differs significantly from other known SSBs, such as human replication protein A (RPA). However, it is conserved in another important human SSB, hSSB1, which we have recently discovered and shown to be essential in the DNA damage response. In this study we report the solution-state backbone and side-chain chemical shift assignments of the OB domain of SsoSSB. In addition, using the recently determined crystal structure, we have utilized NMR to reveal the DNA-binding interface of SsoSSB. These data will allow us to elucidate the structural basis of DNA-binding and shed light onto the molecular mechanism by which these ‘simple’ SSBs interact with single-stranded DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ayed A, Mulder FA, Yi GS, Lu Y, Kay LE, Arrowsmith CH (2001) Latent and active p53 are identical in conformation. Nat Struct Biol 8(9):756–760

    Article  Google Scholar 

  • Bochkarev A, Pfuetzner RA, Edwards AM, Frappier L (1997) Structure of the single-stranded-DNA-binding domain of replication protein A bound to DNA. Nature 385(6612):176–181

    Article  ADS  Google Scholar 

  • Bochkarev A, Bochkareva E, Frappier L, Edwards AM (1999) The crystal structure of the complex of replication protein A subunits RPA32 and RPA14 reveals a mechanism for single-stranded DNA binding. EMBO J 18(16):4498–4504

    Article  Google Scholar 

  • Cai M, Huang Y, Sakaguchi K, Clore GM, Gronenborn AM, Craigie R (1998) An efficient and cost-effective isotope labeling protocol for proteins expressed in Escherichia coli. J Biomol NMR 11(1):97–102

    Article  Google Scholar 

  • Cubeddu L, White MF (2005) DNA damage detection by an archaeal single-stranded DNA-binding protein. J Mol Biol 353(3):507–516

    Article  Google Scholar 

  • Flynn RL, Zou L (2010) Oligonucleotide/oligosaccharide-binding fold proteins: a growing family of genome guardians. Crit Rev Biochem Mol Biol 45(4):266–275

    Article  Google Scholar 

  • Iftode C, Daniely Y, Borowiec JA (1999) Replication protein A (RPA): the eukaryotic SSB. Crit Rev Biochem Mol Biol 34(3):141–180

    Article  Google Scholar 

  • Kerr ID, Wadsworth RI, Cubeddu L, Blankenfeldt W, Naismith JH, White MF (2003) Insights into ssDNA recognition by the OB fold from a structural and thermodynamic study of Sulfolobus SSB protein. EMBO J 22(11):2561–2570

    Article  Google Scholar 

  • Lohman TM, Ferrari ME (1994) Escherichia coli single-stranded DNA-binding protein: multiple DNA-binding modes and cooperativities. Annu Rev Biochem 63:527–570

    Article  Google Scholar 

  • Meyer RR, Laine PS (1990) The single-stranded DNA-binding protein of Escherichia coli. Microbiol Rev 54(4):342–380

    Google Scholar 

  • Murzin AG (1993) OB(oligonucleotide/oligosaccharide binding)-fold: common structural and functional solution for non-homologous sequences. EMBO J 12(3):861–867

    Google Scholar 

  • Mushegian AR, Koonin EV (1996) A minimal gene set for cellular life derived by comparison of complete bacterial genomes. Proc Natl Acad Sci USA 93(19):10268–10273

    Article  ADS  Google Scholar 

  • Newport JW, Lonberg N, Kowalczykowski SC, von Hippel PH (1981) Interactions of bacteriophage T4-coded gene 32 protein with nucleic acids. II. Specificity of binding to DNA and RNA. J Mol Biol 145(1):105–121

    Article  Google Scholar 

  • Raghunathan S, Kozlov AG, Lohman TM, Waksman G (2000) Structure of the DNA binding domain of E. coli SSB bound to ssDNA. Nat Struct Biol 7(8):648–652

    Article  Google Scholar 

  • Richard DJ, Bell SD, White MF (2004) Physical and functional interaction of the archaeal single-stranded DNA-binding protein SSB with RNA polymerase. Nucleic Acids Res 32(3):1065–1074

    Article  Google Scholar 

  • Richard DJ, Bolderson E, Cubeddu L, Wadsworth RI, Savage K, Sharma GG, Nicolette ML, Tsvetanov S, McIlwraith MJ, Pandita RK, Takeda S, Hay RT, Gautier J, West SC, Paull TT, Pandita TK, White MF, Khanna KK (2008) Single-stranded DNA-binding protein hSSB1 is critical for genomic stability. Nature 453(7195):677–681

    Article  ADS  Google Scholar 

  • Richard DJ, Bolderson E, Khanna KK (2009) Multiple human single-stranded DNA binding proteins function in genome maintenance: structural, biochemical and functional analysis. Crit Rev Biochem Mol Biol 44(2–3):98–116

    Google Scholar 

  • Shi H, Zhang Y, Zhang G, Guo J, Zhang X, Song H, Lv J, Gao J, Wang Y, Chen L (2013) Systematic functional comparative analysis of four single-stranded DNA-binding proteins and their affection on viral RNA metabolism. PLoS One 8(1):e55076

    Article  ADS  Google Scholar 

  • Suck D (1997) Common fold, common function, common origin? Nat Struct Biol 4(3):161–165

    Article  MathSciNet  Google Scholar 

  • Sun S, Shamoo Y (2003) Biochemical characterization of interactions between DNA polymerase and single-stranded DNA-binding protein in bacteriophage RB69. J Biol Chem 278(6):3876–3881

    Article  Google Scholar 

  • Wadsworth RI, White MF (2001) Identification and properties of the crenarchaeal single-stranded DNA binding protein from Sulfolobus solfataricus. Nucleic Acids Res 29(4):914–920

    Article  Google Scholar 

  • Wold MS (1997) Replication protein A: a heterotrimeric, single-stranded DNA-binding protein required for eukaryotic DNA metabolism. Annu Rev Biochem 66:61–92

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Health and Medical Council of Australia (NHMRC) [632610 to L.C.].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Roland Gamsjaeger or Liza Cubeddu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gamsjaeger, R., Kariawasam, R., Touma, C. et al. Backbone and side-chain 1H, 13C and 15N resonance assignments of the OB domain of the single stranded DNA binding protein from Sulfolobus solfataricus and chemical shift mapping of the DNA-binding interface. Biomol NMR Assign 8, 243–246 (2014). https://doi.org/10.1007/s12104-013-9492-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12104-013-9492-4

Keywords

Navigation