Biomolecular NMR Assignments

, Volume 6, Issue 1, pp 63–67 | Cite as

1H, 13C, and 15N assignments of wild-type human γS-crystallin and its cataract-related variant γS-G18V

  • William D. Brubaker
  • Rachel W. Martin


We present the backbone and sidechain NMR assignments and a structural analysis of the 178-residue wild-type γS-crystallin and the cataract-related point mutant, γS-G18V. γS-crystallin is a structural component of the eye lens, which maintains its solubility and stability over many years. NMR assignments and continued structural investigations of γS-crystallin and aggregation-prone variants will advance understanding of cataract formation.


Crystallin Eye lens Cataract Protein aggregation Protein stability Solution-state NMR assignments 



The authors thank Melanie Cocco and AJ Shaka for helpful discussions and Evgeny Fadeev for excellent NMR facility management. This work was supported by NSF-CAREER CHE-0847375 and NIH RO1GM-78528.


  1. Baraguey C, Skouri-Panet F, Bontems F, Tardieu A, Chassaing G, Lequin O (2004) 1H, 15N and 13C resonance assignment of human gammaS-crystallin, a 21 kDa eye-lens protein. J Biomol NMR 30:385–386CrossRefGoogle Scholar
  2. Brubaker WD, Freites JA, Golchert KJ, Shapiro RA, Morikis V, Tobias DJ, Martin RW (2011) Separating instability from aggregation propensity in gammaS-crystallin variants. Biophys J 100(2):498–506CrossRefGoogle Scholar
  3. Delaglio F, Grzesiek S, Vuister G, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293CrossRefGoogle Scholar
  4. Goddard TD, Kneller DG (2011) SPARKY 3. University of California, San FranciscoGoogle Scholar
  5. Horwitz J (1992) Alpha-crystallin can function as a molecular chaperone. Proc Natl Acad Sci USA 89(21):10,449–10,453CrossRefGoogle Scholar
  6. Jehle S, Rajagopal P, Bardiaux B, Markovic S, Kühne R, Stout JR, Higman VA, Klevit RE, van Rossum BJ, Oschkinat H (2010) Solid-state NMR and SAXS studies provide a structural basis for the activation of alpha B-crystallin oligomers. Nat Struct Mol Biol 17:1037–1043CrossRefGoogle Scholar
  7. Kupce E, Freeman R (1995) Adiabatic pulses for wide-band inversion and broad-band decoupling. J Magn Reson A 115:273–276Google Scholar
  8. Ma Z, Piszczek G, Wingfield P, Sergeev Y, Hejtmancik J (2009) The G18V CRYGS mutation associated with human cataracts increases gammaS-crystallin sensitivity to thermal and chemical stress. Biochemistry 48:7334–7341CrossRefGoogle Scholar
  9. Mahler B, Doddapaneni K, Kleckner I, Yuan C, Wistow G, Wu Z (2011) Characterization of a transient unfolding intermediate in a core mutant of γS-crystallin. J Mol Biol 405:840–850CrossRefGoogle Scholar
  10. Shaka A, Barker PB, Freeman R (1985) Computer-optimized decoupling scheme for wideband applications and low-level operation. J Magn Reson 64:547–552CrossRefGoogle Scholar
  11. Sun H, Ma Z, Li Y, Liu B, Li Z, Ding X, Gao Y, Ma W, Tang X, Li X, Shen Y (2005) Gamma-S crystallin gene (CRYGS) mutation causes dominant progressive cortical cataract in humans. J Med Genet 42(9):706–710CrossRefGoogle Scholar
  12. Tanaka N, Tanaka R, Tokuhara M, Kunugi S, Lee Y, Hamada D (2008) Amyloid fibril formation and chaperone-like activity of peptides from alpha-crystallin. Biochemistry 47(9):2961–2967CrossRefGoogle Scholar
  13. Wang X, Garcia CM, Shui YB, Beebe DC (2004) Expression and regulation of alpha-, beta-, and gamma-crystallins in mammalian lens epithelial cells. Invest Ophthalmol Vis Sci 45:3608–3619CrossRefGoogle Scholar
  14. Wu Z, Delaglio F, Wyatt K, Wistow G, Bax A (2005) Solution structure of (gamma)S crystallin by molecular fragment replacement NMR. Protein Sci 14(12):2142–2143CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of Molecular Biology and BiochemistryUniversity of CaliforniaIrvineUSA
  2. 2.Departments of Chemistry and Molecular Biology and BiochemistryUniversity of CaliforniaIrvineUSA

Personalised recommendations