Advertisement

American Journal of Criminal Justice

, Volume 41, Issue 1, pp 47–69 | Cite as

Bad Brains: Crime and Drug Abuse from a Neurocriminological Perspective

  • Cody Jorgensen
  • Nathaniel E. Anderson
  • J. C. Barnes
Article

Abstract

Research into the biosocial correlates of antisocial behavior has revealed the importance of integrating sociological findings with evidence flowing from genetics and neuroscience. The present study represents a step toward such integration by offering an in-depth overview of neurocriminology, which is the study of the brain and how it affects antisocial behavior. We consider the role of the brain in both antisocial/criminal behavior as well as in drug use/abuse. We highlight various regions/systems in the brain that have been identified as targets for intervention and as areas in need of more study. This knowledge equips us with the foundation to think translationally about how to promote mental health, adaptive behavior, and well-being among drug using criminal offenders.

Keywords

Neurocriminology Cognitive neuroscience Drug Criminal behavior 

References

  1. Abadinsky, H. (2004). Drugs: An introduction. Belmont, CA: Wadsworth.Google Scholar
  2. Aharoni, E., Vincent, G. M., Harenski, C. L., Calhoun, V. D., Sinnott-Armstrong, W., Gazzaniga, M. S., & Kiehl, K. A. (2013). Neuroprediction of future rearrest. Proceedings of the National Academy of Sciences, 110, 6223–6228.CrossRefGoogle Scholar
  3. Andersen, B. B., Korbo, L., & Pakkenberg, B. (1992). A quantitative study of the human cerebellum with unbiased stereological techniques. Journal the Comprehensive Neurology, 326, 549–560.CrossRefGoogle Scholar
  4. Anderson, S. W., Damasio, H., Tranel, D., & Damasio, A. R. (2000). Long-term sequelae of prefrontal cortex damage acquired in early childhood. Developmental Neuropsychology, 18, 281–296.CrossRefGoogle Scholar
  5. Anderson, N. E., & Kiehl, K. A. (2012). The psychopath magnetized: Insights from brain imaging. Trends in Cognitive Sciences, 16(1), 52–60.Google Scholar
  6. Anderson, N. E., & Kiehl, K. A. (2014). Psychopathy and aggression: When paralimbic dysfunction leads to violence. In Neuroscience of aggression (pp. 369–393). Springer Berlin Heidelberg.Google Scholar
  7. Babiak, P., & Hare, R. D. (2006). Snakes in suits: When psychopaths go to work. New York: Harper Collins.Google Scholar
  8. Barnes, J. C. (2013). The impact of biosocial criminology on public policy: Where should we go from here? In M. DeLisi, & K. M. Beaver (Eds.), Criminological theory: A life-course approach (pp. 83–98). Burlington, MA: Jones and Bartlett Learning.Google Scholar
  9. Barnes, J. C., Wright, J. P., Boutwell, B. B., Schwartz, J. A., Connolly, E. J., Nedelec, J. L., & Beaver, K. M. (2014). Demonstrating the validity of twin research in criminology. Criminology, 52, 588–626.CrossRefGoogle Scholar
  10. Beaver, K. M. (2009). Biosocial criminology: A primer. Dubuque, IA: Kendall/Hunt.Google Scholar
  11. Beaver, K. M., Wright, J. P., & DeLisi, M. (2007). Self-control as an executive function: Reformulating Gottfredson and Hirschi’s parental socialization thesis. Criminal Justice and Behavior, 34, 1345–1361.CrossRefGoogle Scholar
  12. Bechara, A. (2005). Decision making, impulse control and loss of willpower to resist drugs: A neurocognitive perspective. Nature Neuroscience, 8(11), 1458–1463.CrossRefGoogle Scholar
  13. Bierut, L. J. (2011). Genetic vulnerability and susceptibility to substance dependence. Neuron, 69(4), 618–627.CrossRefGoogle Scholar
  14. Blair, R. (2006). The emergence of psychopathy: Implications for the neuropsychological approach to developmental disorders. Cognition, 101, 414–442.CrossRefGoogle Scholar
  15. Blum, K., Braverman, E. R., Holder, J. M., Lubar, J. F., Monastra, V. J., Miller, D.,... & Comings, D. E. (2000). The reward deficiency syndrome: A biogenetic model for the diagnosis and treatment of impulsive, addictive and compulsive behaviors. Journal of Psychoactive Drugs, 32(sup1), 1–112.Google Scholar
  16. Blum, K., Cull, J. G., Braverman, E. R., & Comings, D. E. (1996). Reward deficiency syndrome. American Scientist, 132–145.Google Scholar
  17. Bowirrat, A., & Oscar-Berman, M. (2005). Relationship between dopaminergic neurotransmission, alcoholism, and reward deficiency syndrome. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 132(1), 29–37.CrossRefGoogle Scholar
  18. Briken, P., Habermann, N., Berner, W., & Hill, A. (2005). The influence of brain abnormalities on psychosocial development, criminal history, and paraphilias in sexual murderers. Journal of Forensic Sciences, 50, 1204–1208.CrossRefGoogle Scholar
  19. Brody, A. L., Mandelkern, M. A., London, E. D., Childress, A. R., Lee, G. S., Bota, R. G.,... & Jarvik, M. E. (2002). Brain metabolic changes during cigarette craving. Archives of General Psychiatry, 59(12), 1162–1172.Google Scholar
  20. Brower, M. C., & Price, B. H. (2001). Neuropsychiatry of frontal lobe dysfunction in violent and criminal behaviour: A critical review. Journal of Neurology, Neurosurgery & Psychiatry, 71(6), 720–726.CrossRefGoogle Scholar
  21. Buckholtz, J. W., & Meyer-Lindenberg, A. (2008). MAOA and the neurogenetic architecture of human aggression. Trends in Neurosciences, 31(3), 120–129.CrossRefGoogle Scholar
  22. Burns, J. M., & Swerdlow, R. H. (2003). Right orbitofrontal tumor with pedophilia symptom and constructional apraxia sign. Archives of Neurology, 60(3), 437–440.CrossRefGoogle Scholar
  23. Caspi, A., McClay, J., Moffitt, T. E., Mill, J., Martin, J., Craig, I. W.,... & Poulton, R. (2002). Role of genotype in the cycle of violence in maltreated children. Science, 297(5582), 851–854.Google Scholar
  24. Cato, M. A., Delis, D. C., Abildskov, T. J., & Bigler, E. (2004). Assessing the elusive cognitive deficits associated with ventromedial prefrontal damage: A case of a modern-day Phineas Gage. Journal of the International Neuropsychological Society, 10, 453–465.CrossRefGoogle Scholar
  25. Clark, D. L., Boutros, N. N., & Mendez, M. F. (2010). The brain and behavior: An introduction to behavioral neuroanatomy. Cambridge, MA: Cambridge University Press.CrossRefGoogle Scholar
  26. Coccaro, E. F., McCloskey, M. S., Fitzgerald, D. A., & Phan, K. L. (2007). Amygdala and orbitofrontal reactivity to social threat in individuals with impulsive aggression. Biological Psychiatry, 62(2), 168–178.CrossRefGoogle Scholar
  27. Comings, D. E., & Blum, K. (2000). Reward deficiency syndrome: Genetic aspects of behavioral disorders. Progress in Brain Research, 126, 325–341.CrossRefGoogle Scholar
  28. Cornell, D. G., Warren, J., Hawk, G., Stafford, E., Oram, G., & Pine, D. (1996). Psychopathy in instrumental and reactive violent offenders. Journal of Consulting and Clinical Psychology, 64(4), 783.CrossRefGoogle Scholar
  29. Damasio, H., Grabowski, T., Frank, R., Galaburda, A. M., & Damasio, A. R. (1994). The return of Phineas Gage: Clues about the brain from the skull of a famous patient. Science, 264, 1102–1105.CrossRefGoogle Scholar
  30. DeLisi, M., Umphress, Z. R., & Vaughn, M. G. (2009). The criminology of the amygdala. Criminal Justice and Behavior, 36, 1241–1254.CrossRefGoogle Scholar
  31. Descartes, R. (1972[1664]). Treatise on man. Cambridge, MA: Harvard University Press.Google Scholar
  32. DiChiara, G., & Imperato, A. (1988). Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proceedings to the National Academy of Sciences, 88, 5274–5278.CrossRefGoogle Scholar
  33. Drevets, W. C., Gautier, C., Price, J. C., Kupfer, D. J., Kinahan, P. E., Grace, A. A., et al. (2001). Amphetamine-induced dopamine release in human ventral striatum correlates with euphoria. Biological Psychiatry, 49(2), 81–96.CrossRefGoogle Scholar
  34. Drew, T., Võ, M. L. H., & Wolfe, J. M. (2013). The invisible gorilla strikes again sustained inattentional blindness in expert observers. Psychological Science, 24(9), 1848–1853.CrossRefGoogle Scholar
  35. Ermer, E., Cope, L. M., Nyalakanti, P. K., Calhoun, V. D., & Kiehl, K. A. (2012). Aberrant paralimbic gray matter in criminal psychopathy. Journal of Abnormal Psychology, 121(3), 649.CrossRefGoogle Scholar
  36. Fehr, C., Yakushev, I., Hohmann, N., Buchholz, H. G., Landvogt, C., Deckers, H.,... & Schreckenberger, M. (2008). Association of low striatal dopamine D 2 receptor availability with nicotine dependence similar to that seen with other drugs of abuse. American Journal of Psychiatry, 165(4), 507–514.Google Scholar
  37. Feinstein, J. S., Adolphs, R., Damasio, A., & Tranel, D. (2011). The human amygdala and the induction and experience of fear. Current Biology, 21(1), 34–38.CrossRefGoogle Scholar
  38. Gahlinger, P. (2001). Illegal drugs: A complete guide to their history, chemistry, use and abuse. Salt Lake City, UT: Sagebrush Press.Google Scholar
  39. Garavan, H., & Stout, J. C. (2005). Neurocognitive insights into substance abuse. Trends in Cognitive Science, 9, 195–201.CrossRefGoogle Scholar
  40. Goldstein, R. Z., & Volkow, N. D. (2002). Drug addiction and its underlying neurobiological basis: Neuroimaging evidence for the involvement of the frontal cortex. American Journal of Psychiatry, 159, 1642–1652.CrossRefGoogle Scholar
  41. Gottfredson, M. R., & Hirschi, T. (1990). A general theory of crime. Stanford, CA: Stanford University Press.Google Scholar
  42. Grant, K. A., Shively, C. A., Nader, M. A., Ehrenkaufer, R. L., Line, S. W., Morton, T. E.,... & Mach, R. H. (1998). Effect of social status on striatal dopamine D2 receptor binding characteristics in cynomolgus monkeys assessed with positron emission tomography. Synapse, 29(1), 80–83.Google Scholar
  43. Gregg, T. R., & Siegel, A. (2001). Brain structures and neurotansmitters regulating aggression in cats: Implications for human aggression. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 25(1), 91–140.CrossRefGoogle Scholar
  44. Gregory, S., Simmons, A., Kumari, V., Howard, M., Hodgins, S., & Blackwood, N. (2012). The antisocial brain: Psychopathy matters: A structural MRI investigation of antisocial male violent offenders. Archives of General Psychiatry, 69(9), 962–972.CrossRefGoogle Scholar
  45. Hackman, D. A., Farah, M. J., & Meaney, M. J. (2010). Socioeconomic status and the brain: Mechanistic insights from human and animal research. Nature Reviews Neuroscience, 11(9), 651–659.CrossRefGoogle Scholar
  46. Hare, R. D. (1999). Without conscience: The disturbing world of the psychopaths among us. Guilford Press.Google Scholar
  47. Harlow, J. M. (1993). Classic text no. 14: Recovery from the passage of an iron bar through the head. History of Psychiatry, 4, 271–281.CrossRefGoogle Scholar
  48. Harris, S. (2012). Free will. New York, NY: Free Press.Google Scholar
  49. Hicks, B. M., Iacono, W. G., & McGue, M. (2012). Index of the transmissible common liability to addiction: Heritability and prospective associations with substance abuse and related outcomes. Drug and Alcohol Dependence, 123, S18–S23.CrossRefGoogle Scholar
  50. Hodgkin, A. L., & Huxley, A. F. (1939). Action potentials recorded from inside nerve fiber. Nature, 144, 710–711.CrossRefGoogle Scholar
  51. Hughes, J., Golstein, M., Hurt, R., & Shiffman, S. (1999). Recent advances in the pharmacology of smoking. Journal of the American Medical Association, 28, 72–76.CrossRefGoogle Scholar
  52. Kalivas, P. W., & Volkow, N. D. (2014). The neural basis of addiction: A pathology of motivation and choice. American Journal of Psychiatry.Google Scholar
  53. Kandel, D., Chen, K., Warner, L. A., Kessler, R. C., & Grant, B. (1997). Prevalence and demographic correlates of symptoms of last year dependence on alcohol, nicotine, marijuana and cocaine in the US population. Drug and Alcohol Dependence, 44(1), 11–29.CrossRefGoogle Scholar
  54. Karberg, J. C., & James, D. J. (2005). Substance dependence, abuse, and treatment of jail inmates, 2002. Washington, DC: US Department of Justice, Office of Justice Programs, Bureau of Justice Statistics.Google Scholar
  55. Katzenstein, L., & Grossman, E. B. (Eds.). (2001). Viagra (sildenafil citrate): The remarkable story of the discovery and launch. Medical Information Press.Google Scholar
  56. Kendler, K. S., Aggen, S. H., Tambs, K., & Reichborn-Kjennerud, T. (2006). Illicit psychoactive substance use, abuse and dependence in a population-based sample of Norwegian twins. Psychological Medicine, 36(07), 955–962.CrossRefGoogle Scholar
  57. Kendler, K. S., Karkowski, L. M., Neale, M. C., & Prescott, C. A. (2000). Illicit psychoactive substance use, heavy use, abuse, and dependence in a US population-based sample of male twins. Archives of General Psychiatry, 57(3), 261–269.CrossRefGoogle Scholar
  58. Kiehl, K. A. (2006). A cognitive neuroscience perspective psychopathy: Evidence for paralimbic system dysfunction. Psychiatry Research, 142, 107–128.CrossRefGoogle Scholar
  59. Kiehl K. A., Liddle P. F., & Hopfinger J.B. (2000). Error processing and the rostral anterior cingulate: An event-related fMRI study. Psychophysiology 37, 216–223.Google Scholar
  60. Klüver, H., & Bucy, P. C. (1997). Preliminary analysis of functions of the temporal lobes in monkeys. The Journal of Neuropsychiatry and Clinical Neurosciences, 9(4), 606-a.CrossRefGoogle Scholar
  61. Koch, C. (2012). Consciousness: Confessions of a romantic reductionist. Cambridge, MA: MIT Press.Google Scholar
  62. Kolb, B., & Wishaw, I. (2014). An introduction to the brain and behavior (3rd ed., ). New York, NY: Worth Publishers.Google Scholar
  63. Kolb, B., & Whishaw, I. Q. (1998). Brain plasticity and behavior. Annual Review of Psychology, 49(1), 43–64.CrossRefGoogle Scholar
  64. Koob, G. F., & Simon, E. J. (2009). The neurobiology of addiction: Where we have been and where we are going. Journal of Drug Issues, 39(1), 115–132.CrossRefGoogle Scholar
  65. Kreek, M. J., Nielsen, D. A., Butelman, E. R., & LaForge, K. S. (2005). Genetic influences on impulsivity, risk taking, stress responsivity and vulnerability to drug abuse and addiction. Nature Neuroscience, 8(11), 1450–1457.CrossRefGoogle Scholar
  66. Laakso, M. P., Gunning-Dixon, F., Vaurio, O., Repo-Tiihonen, E., Soininen, H., & Tiihonen, J. (2002). Prefrontal volumes in habitually violent subjects with antisocial personality disorder and type 2 alcoholism. Psychiatry Research: Neuroimaging, 114(2), 95–102.CrossRefGoogle Scholar
  67. LeDoux, J. (2003). The emotional brain, fear, and the amygdala. Cellular and Molecular Neurobiology, 23(4–5), 727–738.CrossRefGoogle Scholar
  68. Lee, G. P., Bechara, A., Adolphs, R., Arena, J., Meador, K. J., Loring, D. W., & Smith, J. R. (1998). Clinical and physiological effects of stereotaxic bilateral amygdalotomy for intractable aggression. The Journal of Neuropsychiatry and Clinical Neurosciences, 10, 413–420.CrossRefGoogle Scholar
  69. Lingford-Hughes, A. R., Welsh, S., Peters, L., & Nutt, D. J. (2012). Journal of Psychopharmacology, 26, 899–952.CrossRefGoogle Scholar
  70. MacLean, P. D. (1955). The limbic system (visceral brain) and emotional behavior. AMA Archives of Neurology & Psychiatry, 73(2), 130–134.CrossRefGoogle Scholar
  71. Macmillan, M. (1999). An odd kind of fame: Stories of Phineas Gage. Cambridge, MA: MIT Press, Bradford Books.Google Scholar
  72. Marhe, R., & Franken, I. (2014). Error-related brain activity as a biomarker for cocaine relapse. Neuropsychopharmacology, 39(1), 241–241.CrossRefGoogle Scholar
  73. Marsh, A. A., Finger, E. C., Mitchell, D. G., Reid, M. E., Sims, C., Kosson, D. S.,... & Blair, R. J. R. (2008). Reduced amygdala response to fearful expressions in children and adolescents with callous-unemotional traits and disruptive behavior disorders. The American Journal of Psychiatry, 165(6), 712–720.Google Scholar
  74. Martinez, D., Broft, A., Foltin, R. W., Slifstein, M., Hwang, D. R., Huang, Y.,... & Frankel, W. G. (2004). Cocaine dependence and d2 receptor availability in the functional subdivisions of the striatum: Relationship with cocaine-seeking behavior. Neuropsychopharmacology, 29(6), 1190–1202.Google Scholar
  75. McCance, E. F. (1997). Overview of the potential treatment medicsations for cocaine dependence. In B. Tai, N. Chiang, & P. Bridge (Eds.), Medication development for the treatment of cocaine dependence: Issues in clinical efficacy trials. NIDA: Rockville, MD.Google Scholar
  76. McKinlay, A., Corrigan, J., Horwood, L. J., & Fergusson, D. M. (2014). Substance abuse and criminal activities following traumatic brain injury in childhood, adolescence, and early adulthood. The Journal of Head Trauma Rehabilitation, 29(6), 498–506.CrossRefGoogle Scholar
  77. Meyers, C. A., Berman, S. A., Scheibel, R. S., & Hayman, A. (1992). Case report: Acquired antisocial personality disorder associated with unilateral left orbital frontal lobe damage. Journal of Psychiatry & Neuroscience, 17, 121–125.Google Scholar
  78. Miles, D. R., & Carey, G. (1997). Genetic and environmental architecture of human aggression. Journal of Personality and Social Psychology, 72, 207–217.CrossRefGoogle Scholar
  79. Milner, B. (1972). Disorders of learning and memory after temporal lobe lesions in man. Clinical Neurosurgery, 19, 421–466.Google Scholar
  80. Moffitt, T. E. (2005). The new look of behavioral genetics in developmental psychopathology: Gene-environment interplay in antisocial behaviors. Psychological Bulletin, 131, 533–554.CrossRefGoogle Scholar
  81. Morgan, D., Grant, K. A., Gage, H. D., Mach, R. H., Kaplan, J. R., Prioleau, O.,... & Nader, M. A. (2002). Social dominance in monkeys: Dopamine D2 receptors and cocaine self-administration. Nature Neuroscience, 5(2), 169–174.Google Scholar
  82. Mosher, C. J., & Akins, S. M. (2014). Drugs and drug policy: The control of consciousness alternation (2nd ed., ). Thousand Oaks, CA: Sage.Google Scholar
  83. National Institute on Drug Abuse. (2014). Drugs, brains, and behavior: The science of addiction. Publication No. 14-5605Google Scholar
  84. O’Brien, C. (1997). A range of research-based pharmacotherapies for addiction. Science, 278, 66–70.CrossRefGoogle Scholar
  85. Papez, J. W. (1995). A proposed mechanism of emotion. 1937. Journal of Neuropsychiatry and Clinical Neuroscience, 7, 103–112.CrossRefGoogle Scholar
  86. Raine, A. (1993). The psychopathology of crime: Criminal behavior as a clinical disorder. San Diego, CA: Academic Press.Google Scholar
  87. Raine, A. (2013). The anatomy of violence: The biological roots of crime. New York: Pantheon.Google Scholar
  88. Raine, A., Buschbaum, M. S., Stanley, J., Lottenberg, S., Abel, L., & Stoddar, J. (1994). Selective reductions in prefrontal glucose metabolism in muderers. Biological Psychiatry, 36, 365–373.CrossRefGoogle Scholar
  89. Raine, A., Lencz, T., Bihrle, S., LaCasse, L., & Colletti, P. (2000). Reduced prefrontal gray matter volume and reduced autonomic activity in antisocial personality disorder. Archives of General Psychiatry, 57, 119–127.CrossRefGoogle Scholar
  90. Rhee, S. H., & Waldman, I. D. (2002). Genetic and environmental influences on antisocial behavior: A meta-analysis of twin and adoption studies. Psychological Bulletin, 128, 490–529.CrossRefGoogle Scholar
  91. Rocque, M., Welsh, B., & Raine, A. (2012). Biosocial criminology and modern crime prevention. Journal of Criminal Justice, 40, 306–312.CrossRefGoogle Scholar
  92. Roskies, E. R., Fiez, J. A., Balota, D. A., Raichle, M. E., & Petersen, S. E. (2001). Task dependent modulation of regions in the left inferior cortex during semantic processing. Journal of Cognitive Neuroscience, 13, 829–866.CrossRefGoogle Scholar
  93. Rubia, K., Smith, A. B., Halari, R., Matsukura, F., Mohammad, M., Taylor, E., & Brammer, M. J. (2009). Disorder-specific dissociation of orbitofrontal dysfunction in boys with pure conduct disorder during reward and ventrolateral prefrontal dysfunction in boys with pure ADHD during sustained attention. The American Journal of Psychiatry, 166(1), 83–94.CrossRefGoogle Scholar
  94. Simons, D. J., & Chabris, C. F. (1999). Gorillas in our midst: Sustained inattentional blindness for dynamic events. Perception-London, 28(9), 1059–1074.CrossRefGoogle Scholar
  95. Squire, L. R. (2009). The legacy of patient HM for neuroscience. Neuron, 61(1), 6–9.CrossRefGoogle Scholar
  96. Stahl, S. M. (2013). Essentials of psychopharmacology (4th ed., ). New York, NY: Cambridge University Press.Google Scholar
  97. Taber-Thomas, B. C., Asp, E. W., Koenigs, M., Sutterer, M., Anderson, S. W., & Tranel, D. (2014). Arrested development: Early prefrontal lesions impair the maturation of moral judgement. Brain, 137(4), 1254–1261.CrossRefGoogle Scholar
  98. Thompson, P. M., Cannon, T. D., Narr, K. L., van Erp, T., Poutanen, V. P., & Huttenen, M. (2001). Genetic influences on brain struncture. Nature Neuroscience, 4, 1253–1258.CrossRefGoogle Scholar
  99. Tsuang, M. T., Bar, J. L., Harley, R. M., & Lyons, M. J. (2001). The Harvard twin study of substance abuse: What we have learned. Harvard Review of Psychiatry, 9(6), 267–279.CrossRefGoogle Scholar
  100. Tsuang, M. T., Lyons, M. J., Eisen, S. A., Goldberg, J., True, W., Lin, N.,... & Eaves, L. (1996). Genetic influences on DSM-III-R drug abuse and dependence: A study of 3,372 twin pairs. American Journal of Medical Genetics, 67(5), 473–477.Google Scholar
  101. Urbanoski, K. A., & Kelly, J. F. (2012). Understanding genetic risk for substance use and addiction: A guide for non-geneticists. Clinical Psychology Review, 32(1), 60–70.CrossRefGoogle Scholar
  102. van den Bree, M. B., Johnson, E. O., Neale, M. C., & Pickens, R. W. (1998). Genetic and environmental influences on drug use and abuse/dependence in male and female twins. Drug and Alcohol Dependence, 52(3), 231–241.CrossRefGoogle Scholar
  103. Vastag, B. (2003). In office opiate treatment “not a panacea”: Physicians slow to embrace therapeutic option. Journal of the American Medical Association, 290, 731–735.CrossRefGoogle Scholar
  104. Vastola, B. J., Douglas, L. A., Varlinskaya, E. I., & Spear, L. P. (2002). Nicotine-induced conditioned place preference in adolescent and adult rats. Physiology & Behavior, 77(1), 107–114.CrossRefGoogle Scholar
  105. Volkow, N. D., & Fowler, J. S. (2000). Addiction, a disease of compulsion and drive: Involvement of the orbitofrontal cortex. Cerebral Cortex, 10(3), 318–325.CrossRefGoogle Scholar
  106. Volkow, N. D., Fowler, J. S., & Wang, G. J. (2004). The addicted human brain viewed in the light of imaging studies: Brain circuits and treatment strategies. Neuropharmacology, 47, 3–13.CrossRefGoogle Scholar
  107. Volkow, N. D., Fowler, J. S., Wang, G. J., Hitzemann, R., Logan, J., Schlyer, D. J., Dewey, S. L., & Wolf, A. P. (1999). Association of methylphenidate-induced craving with changes in right striato-orbitofrontal metabolism in cocaine abusers: Implications in addiction. American Journal of Psychiatry, 156, 19–26.CrossRefGoogle Scholar
  108. Volkow, N. D., Fowler, J. S., Wolf, A. P., Hitzemann, R., Dewey, S., Bendriem, B., Alpert, R., & Hoff, A. (1991). Changes in brain glucose metabolism in cocaine dependence and withdrawal. American Journal of Psychiatry, 1(48), 621–626.Google Scholar
  109. Wilson, D.M., Varvel, S.A., Harloe, J.P, Martin, B.R., and Lichtman, A.H. (2006). SR 141716 (Rimonabant) precipitates withdrawal in marijuana dependent mice. Pharmacology, Biochemistry, and Behavior, 85: 105–113.Google Scholar
  110. Yang, Y., & Raine, A. (2009). Prefrontal structural and functional brain imaging findings in antisocial, violent, and psychopathic individuals: A meta-analysis. Psychiatry Research: Neuroimaging, 174(2), 81–88.CrossRefGoogle Scholar
  111. Yang, Y., Raine, A., Lencz, T., Bihrle, S., LaCasse, L., & Colletti, P. (2005). Volume reduction in prefrontal gray matter in unsuccessful psychopaths. Biological Psychiatry, 57, 1103–1108.CrossRefGoogle Scholar
  112. Zickler, P. (1999). Twin studies help define the role of genes in vulnerability to drug abuse. NIDA Notes, 14, 1, 5, 8.Google Scholar

Copyright information

© Southern Criminal Justice Association 2016

Authors and Affiliations

  • Cody Jorgensen
    • 1
  • Nathaniel E. Anderson
    • 2
  • J. C. Barnes
    • 3
  1. 1.Department of Criminal JusticeBoise State UniversityBoiseUSA
  2. 2.The Mind Research NetworkAlbuquerqueUSA
  3. 3.School of Criminal JusticeUniversity of CincinnatiCincinnatiUSA

Personalised recommendations