Skip to main content

Advertisement

Log in

What is New in the Diagnosis of Childhood Tuberculosis?

  • Review Article
  • Published:
Indian Journal of Pediatrics Aims and scope Submit manuscript

Abstract

The fact that almost half of the 1 million cases of childhood tuberculosis (TB) globally remain undiagnosed jeopardizes the TB elimination goal. Fortunately, there are new advances in this field which have the potential to bridge this diagnostic gap. Advances in imaging include computer assisted interpretation of chest X-rays (CXRs), point of care ultrasound (POCUS) and faster and superior computed tomography/ magnetic resonance imaging (CT/ MRI) protocols. The urine lipoarabinomannan test has proved to be a good point of care test for diagnosing TB in Human immunodeficiency virus (HIV) infected children. Stool and nasopharyngeal aspirates are emerging as acceptable alternatives for gastric lavage and induced sputum for diagnosing intrathoracic tuberculosis. Xpert MTB/RIF Ultra has improved sensitivity compared to Xpert MTB/RIF for diagnosing both pulmonary/ extrapulmonary TB. Xpert XDR is another commercially available accurate point of care test for detecting resistance to drugs other than rifampicin in smear positive samples. Other molecular methods including new line probe assays, pyrosequencing, whole genome sequencing, and targeted next generation sequencing are extremely promising but not available commercially at present. The C-Tb skin test is an acceptable alternative to the tuberculin skin test and interferon gamma release assays for diagnosis of latent infection. There is an urgent need to incorporate some of these advances in the existing diagnostic algorithms of childhood TB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Global Tuberculosis Report 2022. Geneva: World Health Organization. 2022. Available at: https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2022. Accessed on 28 Nov 2023.

  2. The END TB Strategy. Global Strategy and Targets for Tuberculosis Prevention, Care and Control after 2015. Geneva: World Health Organization. 2014. Available at: https://www.who.int/tb/strategy/End_TB_Strategy.pdf. Accessed on 28 Nov 2023.

  3. Roadmap Towards Ending TB in Children and Adolescents, Second edition. Geneva: World Health Organization. 2018. Available at: https://apps.who.int/iris/handle/10665/275422. Accessed on 28 Nov 2023.

  4. Wobudeya E, Bonnet M, Walters EG, et al. Diagnostic advances in childhood tuberculosis—improving specimen collection and yield of microbiological diagnosis for intrathoracic tuberculosis. Pathogens. 2022;11:389.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kontsevaya I, Cabibbe AM, Cirillo DM, et al. Update on the diagnosis of tuberculosis. Clin Microbiol Infect. 2023. https://doi.org/10.1016/j.cmi.2023.07.014.

    Article  PubMed  Google Scholar 

  6. Vaezipour N, Fritschi N, Brasier N, et al. Towards accurate point-of-care tests for tuberculosis in children. Pathogens. 2022;11:327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Vonasek B, Ness T, Takwoingi Y, et al. Screening tests for active pulmonary tuberculosis in children. Cochrane Database Syst Rev. 2021;6:CD013693.

    PubMed  Google Scholar 

  8. Brooks MB, Hussain H, Siddiqui S, et al. Two clinical prediction tools to inform rapid tuberculosis treatment decision-making in children. Open Forum Infect Dis. 2023;10:ofad245.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Zimmer AJ, Ugarte-Gil C, Pathri R, et al. Making cough count in tuberculosis care. Commun Med (Lond). 2022;2:83.

    Article  PubMed  Google Scholar 

  10. WHO. Chest Radiography in Tuberculosis Detection, 2016. Available at: https://apps.who.int/iris/bitstream/handle/10665/252424/9789241511506-eng.pdf?sequence=1. Accessed on 21 Nov 2023.

  11. Qin ZZ, Ahmed S, Sarker MS, et al. Tuberculosis detection from chest x-rays for triaging in a high tuberculosis-burden setting: an evaluation of five artificial intelligence algorithms. Lancet Digit Health. 2021;3:e543–54.

    Article  CAS  PubMed  Google Scholar 

  12. World Health Organization. WHO Consolidated Guidelines on Tuberculosis. Module 5: Management of Tuberculosis in Children and Adolescents, 2022. Available at: https://iris.who.int/bitstream/handle/10665/352522/9789240046764-eng.pdf?sequence=1. Accessed on 20 Nov 2023.

  13. Concepcion NDP, Laya BF, Andronikou S, Abdul Manaf Z, Atienza MIM, Sodhi KS. Imaging recommendations and algorithms for pediatric tuberculosis: Part 1-thoracic tuberculosis. Pediatr Radiol. 2023;53:1773–81.

    Article  PubMed  Google Scholar 

  14. Jain SK, Andronikou S, Goussard P, et al. Advanced imaging tools for childhood tuberculosis: Potential applications and research needs. Lancet Infect Dis. 2020;20:e289–97.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wang B, Li M, Ma H, et al. Computed tomography-based predictive nomogram for differentiating primary progressive pulmonary tuberculosis from community-acquired pneumonia in children. BMC Med Imaging. 2019;19:63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ruby LC, Heuvelings CC, Grobuch MP, et al. Transthoracic mediastinal ultrasound in childhood tuberculosis: a review. Paediatr Respir Rev. 2022;41:40–8.

    PubMed  Google Scholar 

  17. Sodhi KS, Khandelwal N, Saxena AK, et al. Rapid lung MRI in children with pulmonary infections: Time to change our diagnostic algorithms. J Magn Reson Imaging. 2016;43:1196–206.

    Article  PubMed  Google Scholar 

  18. Landge AA, Singhal T. Etiology of fever of unknown origin in children from Mumbai. India Indian Pediatr. 2018;55:71–2.

    Article  PubMed  Google Scholar 

  19. Seid G, Alemu A, Tsedalu T, Dagne B. Value of urine-based lipoarabinomannan (LAM) antigen tests for diagnosing tuberculosis in children: Systematic review and meta-analysis. IJID Reg. 2022;4:97–104.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Peter JG, Zijenah LS, Chanda D, et al. Effect on mortality of point-of-care, urine-based lipoarabinomannan testing to guide tuberculosis treatment initiation in HIV-positive hospital inpatients: a pragmatic, parallel-group, multicountry, open-label, randomised controlled trial. Lancet. 2016;387:1187–97.

    Article  PubMed  Google Scholar 

  21. World Health Organization. Lateral Flow Urine Lipoarabinomannan Assay (LF-LAM) for the Diagnosis of Active Tuberculosis in People Living with HIV. Policy Update. 2019. Available at: https://iris.who.int/bitstream/handle/10665/329479/9789241550604-eng.pdf?sequence=1. Accessed on 20 Nov 2023.

  22. World Health Organization. WHO Consolidated Guidelines on Tuberculosis. Module 3: Diagnosis. Tests for Tuberculosis Infection, 2022. Available at: https://iris.who.int/bitstream/handle/10665/362936/9789240056084-eng.pdf?sequence=1. Accessed on 20 Nov 2023.

  23. Ruhwald M, Aggerbeck H, Gallardo RV, et al. Safety and efficacy of the C-Tb skin test to diagnose Mycobacterium tuberculosis infection, compared with an interferon γ release assay and the tuberculin skin test: a phase 3, double-blind, randomised, controlled trial. Lancet Respir Med. 2017;5:259–68.

    Article  CAS  PubMed  Google Scholar 

  24. Aggerbeck H, Ruhwald M, Hoff ST, et al. C-Tb skin test to diagnose Mycobacterium tuberculosis infection in children and HIV-infected adults: a phase 3 trial. PLoS One. 2018;13:e0204554.

  25. Mesman AW, Rodriguez C, Ager E, Coit J, Trevisi L, Franke MF. Diagnostic accuracy of molecular detection of Mycobacterium tuberculosis in pediatric stool samples: a systematic review and meta-analysis. Tuberculosis (Edinb). 2019;119:101878.

  26. Cox H, Workman L, Bateman L, et al. Oral swabs tested with Xpert MTB/RIF Ultra for diagnosis of pulmonary tuberculosis in children: a diagnostic accuracy study. Clin Infect Dis. 2022;75:2145–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chow F, Espiritu N, Gilman RH, et al. La cuerda dulce–a tolerability and acceptability study of a novel approach to specimen collection for diagnosis of paediatric pulmonary tuberculosis. BMC Infect Dis. 2006;6:67.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Williams CM, Abdulwhhab M, Birring SS, et al. Exhaled Mycobacterium tuberculosis output and detection of subclinical disease by face-mask sampling: Prospective observational studies. Lancet Infect Dis. 2020;20:607–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shaikh A, Sriraman S, Vaswani S, et al. SMaRT-PCR sampling with mask and reverse transcriptase PCR, a promising non-invasive diagnostic tool for paediatric pulmonary tuberculosis. medRxiv (preprint). 2023. https://doi.org/10.1101/2023.06.17.23291480.

  30. MacLean E, Kohli M, Weber SF, et al. Advances in molecular diagnosis of tuberculosis. J Clin Microbiol. 2020;58:e01582–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yadav R, Daroch P, Gupta P, et al. Evaluation of TB-LAMP assay for detection of Mycobacterium tuberculosis in children. Infect Dis (Lond). 2021;53:942–6.

    Article  CAS  PubMed  Google Scholar 

  32. Signorino C, Votto M, De Filippo M, Marseglia GL, Galli L, Chiappini E. Diagnostic accuracy of Xpert ultra for childhood tuberculosis: a preliminary systematic review and meta-analysis. Pediatr Allergy Immunol. 2022;33:80–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shen Y, Yu G, Zhao W, Lang Y. Efficacy of Xpert MTB/RIF Ultra in diagnosing tuberculosis meningitis: a systematic review and meta-analysis. Medicine (Baltimore). 2021;100:e26778.

    Article  PubMed  Google Scholar 

  34. Pillay S, Steingart KR, Davies GR, et al. Xpert MTB/XDR for detection of pulmonary tuberculosis and resistance to isoniazid, fluoroquinolones, ethionamide, and amikacin. Cochrane Database Syst Rev. 2022;5:CD014841.

    PubMed  Google Scholar 

  35. Kohli M, MacLean E, Pai M, Schumacher SG, Denkinger CM. Diagnostic accuracy of centralized assays for TB detection and detection of resistance to rifampicin and isoniazid: a systematic review and meta-analysis. Eur Respir J. 2021;57:2000747.

    Article  CAS  PubMed  Google Scholar 

  36. Meehan CJ, Goig GA, Kohl TA, et al. Whole genome sequencing of Mycobacterium tuberculosis: Current standards and open issues. Nat Rev Microbiol. 2019;17:533–45.

    Article  CAS  PubMed  Google Scholar 

  37. Walker TM, Cruz ALG, Peto TE, et al. Tuberculosis is changing. Lancet Infect Dis. 2017;17:359–61.

    Article  PubMed  Google Scholar 

  38. Mahomed S, Naidoo K, Dookie N, et al. Whole genome sequencing for the management of drug-resistant TB in low-income high TB burden settings: Challenges and implications. Tuberculosis. 2017;107:137–43.

    Article  CAS  PubMed  Google Scholar 

  39. World Health Organization. Catalogue of Mutations in Mycobacterium tuberculosis Complex and their Association with Drug Resistance. 2021. Available at: https://iris.who.int/bitstream/handle/10665/341981/9789240028173-eng.pdf?sequence=1. Accessed on 23 Nov 2023.

  40. Genoscreen. Deeplex® Myc-TB: From Clinical Samples to Drug Resistance Profile. Lille, France: Genoscreen. 2019. Available at: https://www.genoscreen.fr/en/genomic-services/products/deeplex-myc-tb. Accessed on 23 Nov 2023.

  41. Ajbani K, Kazi M, Agrawal U, et al. Evaluation of CSF pyrosequencing to diagnose tuberculous meningitis: a retrospective diagnostic accuracy study. Tuberculosis (Edinb). 2021;126:102048.

    Article  CAS  PubMed  Google Scholar 

  42. Jin W, Pan J, Miao Q, et al. Diagnostic accuracy of metagenomic next-generation sequencing for active tuberculosis in clinical practice at a tertiary general hospital. Ann Transl Med. 2020;8:1065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Xing XW, Zhang JT, Ma YB, et al. Metagenomic next-generation sequencing for diagnosis of infectious encephalitis and meningitis: a large, prospective case series of 213 patients. Front Cell Infect Microbiol. 2020;10:88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Anderson ST, Kaforou M, Brent AJ, et al. Diagnosis of childhood TB in high TB/HIV burden African countries by host RNA expression. N Engl J Med. 2014;370:1712–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yu G, Shen Y, Ye B, et al. Diagnostic accuracy of Mycobacterium tuberculosis cell-free DNA for tuberculosis: a systematic review and meta-analysis. PLoS One. 2021;16:e0253658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pollock NR, MacIntyre AT, Blauwkamp TA, et al. Detection of Mycobacterium tuberculosis cell-free DNA to diagnose TB in pediatric and adult patients. Int J Tuberc Lung Dis. 2021;25:403–5.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed to drafting and finalization of the manuscript. TS will act as guarantor for this manuscript.

Corresponding author

Correspondence to Tanu Singhal.

Ethics declarations

Conflict of Interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodrigues, C., Singhal, T. What is New in the Diagnosis of Childhood Tuberculosis?. Indian J Pediatr 91, 717–723 (2024). https://doi.org/10.1007/s12098-023-04992-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12098-023-04992-0

Keywords

Navigation