Skip to main content

Advertisement

Log in

Acute Lymphoblastic Leukemia with Central Nervous System Involvement—Challenges in Management

  • Review Article
  • Published:
Indian Journal of Pediatrics Aims and scope Submit manuscript

Abstract

The survival of patients with acute lymphoblastic leukemia (ALL) has dramatically improved during the last six decades. This improvement is secondary to improved diagnostics, risk stratification of treatment by biological features and response to treatment, improved supportive care, and the introduction of new treatment modalities such as immunotherapy and molecular targeted therapy. However, many questions remain concerning the involvement of the central nervous system (CNS) in leukemia, including ones pertaining to the risk factors for CNS involvement and relapse, the optimal treatment strategy to prevent relapse, and the role of newer therapies. This review discusses these questions by addressing the diagnosis of CNS leukemia, the current clinical trial data for treatment regimens with CNS activity, and issues specific to treatment in low- and middle-income countries (LMICs).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Hunger SP, Mullighan CG. Acute lymphoblastic leukemia in children. N Engl J Med. 2015;373:1541–52.

    Article  PubMed  CAS  Google Scholar 

  2. Inaba H, Pui C-H. Advances in the diagnosis and treatment of pediatric acute lymphoblastic leukemia. J Clin Med. 2021;10:1926.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Arora RS, Arora B. Acute leukemia in children: a review of the current Indian data. South Asian J Cancer. 2016;5:155–60.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Thastrup M, Duguid A, Mirian C, Schmiegelow K, Halsey C. Central nervous system involvement in childhood acute lymphoblastic leukemia: challenges and solutions. Leukemia. 2022;36:2751–68.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Winick N, Devidas M, Chen S, et al. Impact of initial CSF findings on outcome among patients with National Cancer Institute standard- and high-risk B-cell acute lymphoblastic leukemia: a report from the Children’s Oncology Group. J Clin Oncol. 2017;35:2527–34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Gossai NP, Devidas M, Chen Z, et al. Central nervous system status is prognostic in T-cell acute lymphoblastic leukemia: a Children’s Oncology Group report. Blood. 2023;141:1802–11.

    Article  PubMed  CAS  Google Scholar 

  7. Thastrup M, Marquart HV, Levinsen M, et al. Flow cytometric detection of leukemic blasts in cerebrospinal fluid predicts risk of relapse in childhood acute lymphoblastic leukemia: a nordic Society of Pediatric Hematology and Oncology study. Leukemia. 2020;34:336–46.

    Article  PubMed  CAS  Google Scholar 

  8. Gajjar A, Harrison PL, Sandlund JT, et al. Traumatic lumbar puncture at diagnosis adversely affects outcome in childhood acute lymphoblastic leukemia. Blood. 2000;96:3381–4.

    Article  PubMed  CAS  Google Scholar 

  9. Pui C-H, Howard SC. Current management and challenges of malignant disease in the CNS in paediatric leukaemia. Lancet Oncol. 2008;9:257–68.

    Article  PubMed  Google Scholar 

  10. Howard SC, Gajjar AJ, Cheng C, et al. Risk factors for traumatic and bloody lumbar puncture in children with acute lymphoblastic leukemia. JAMA. 2002;288:2001–7.

    Article  PubMed  Google Scholar 

  11. Tang J, Yu J, Cai J, et al. Prognostic factors for CNS control in children with acute lymphoblastic leukemia treated without cranial irradiation. Blood. 2021;138:331–43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Aur RJ, Simone J, Hustu HO, et al. Central nervous system therapy and combination chemotherapy of childhood lymphocytic leukemia. Blood. 1971;37:272–81.

    Article  PubMed  CAS  Google Scholar 

  13. Pui C-H, Campana D, Pei D, et al. Treating childhood acute lymphoblastic leukemia without cranial irradiation. N Engl J Med. 2009;360:2730–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Jeha S, Pei D, Raimondi SC, et al. Increased risk for CNS relapse in pre-B cell leukemia with the t(1;19)/TCF3-PBX1. Leukemia. 2009;23:1406–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Veerman AJ, Kamps WA, van den Berg H, et al. Dexamethasone-based therapy for childhood acute lymphoblastic leukaemia: results of the prospective dutch childhood Oncology Group (DCOG) protocol ALL-9 (1997–2004). Lancet Oncol. 2009;10:957–66.

    Article  PubMed  CAS  Google Scholar 

  16. Jeha S, Pei D, Choi J, et al. Improved CNS control of childhood acute lymphoblastic leukemia without cranial irradiation: St Jude Total Therapy Study 16. J Clin Oncol. 2019;37:3377–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Vora A, Andreano A, Pui C-H, et al. Influence of cranial radiotherapy on outcome in children with acute lymphoblastic leukemia treated with contemporary therapy. J Clin Oncol. 2016;34:919–26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Matloub Y, Lindemulder S, Gaynon PS, et al. Intrathecal triple therapy decreases central nervous system relapse but fails to improve event-free survival when compared with intrathecal methotrexate: results of the Children’s Cancer Group (CCG) 1952 study for standard-risk acute lymphoblastic leukemia, reported by the Children’s Oncology Group. Blood. 2006;108:1165–73.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Salzer WL, Burke MJ, Devidas M, et al. Impact of intrathecal triple therapy versus intrathecal methotrexate on disease-free survival for high-risk B-lymphoblastic leukemia: Children’s Oncology Group Study AALL1131. J Clin Oncol. 2020;38:2628–38.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Brennan RC, Helton KJ, Pei D, et al. Spinal epidural lipomatosis in children with hematologic malignancies. Ann Hematol. 2011;90:1067–74.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wilson R, Osborne C, Halsey C. The use of Ommaya reservoirs to deliver central nervous system-directed chemotherapy in childhood acute lymphoblastic leukaemia. Paediatr Drugs. 2018;20:293–301.

    Article  PubMed  Google Scholar 

  22. Jacola LM, Krull KR, Pui C-H, et al. Longitudinal assessment of neurocognitive outcomes in survivors of childhood acute lymphoblastic leukemia treated on a contemporary chemotherapy protocol. J Clin Oncol. 2016;34:1239–47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Jacola LM, Conklin HM, Krull KR, et al. The impact of intensified CNS-directed therapy on neurocognitive outcomes in survivors of childhood acute lymphoblastic leukemia treated without cranial irradiation. J Clin Oncol. 2022;40:4218–27.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Banerjee P, Rossi MG, Anghelescu DL, et al. Association between anesthesia exposure and neurocognitive and neuroimaging outcomes in long-term survivors of childhood acute lymphoblastic leukemia. JAMA Oncol. 2019;5:1456–63.

    Article  PubMed  Google Scholar 

  25. Balis FM, Lester CM, Chrousos GP, Heideman RL, Poplack DG. Differences in cerebrospinal fluid penetration of corticosteroids: possible relationship to the prevention of meningeal leukemia. J Clin Oncol. 1987;5:202–7.

    Article  PubMed  CAS  Google Scholar 

  26. Bostrom BC, Sensel MR, Sather HN, et al. Dexamethasone versus prednisone and daily oral versus weekly intravenous mercaptopurine for patients with standard-risk acute lymphoblastic leukemia: a report from the Children’s Cancer Group. Blood. 2003;101:3809–17.

    Article  PubMed  CAS  Google Scholar 

  27. Mitchell CD, Richards SM, Kinsey SE, Lilleyman J, Vora A, Eden TO. Benefit of dexamethasone compared with prednisolone for childhood acute lymphoblastic leukaemia: results of the UK Medical Research Council ALL97 randomized trial. Br J Haematol. 2005;129:734–45.

    Article  PubMed  CAS  Google Scholar 

  28. Möricke A, Zimmermann M, Valsecchi MG, et al. Dexamethasone vs prednisone in induction treatment of pediatric ALL: results of the randomized trial AIEOP-BFM ALL 2000. Blood. 2016;127:2101–12.

    Article  PubMed  Google Scholar 

  29. Vrooman LM, Neuberg DS, Stevenson KE, Supko JG, Sallan SE, Silverman LB. Dexamethasone and individualized asparaginase dosing are each associated with superior event-free survival in childhood acute lymphoblastic leukemia: results from DFCI-ALL Consortium Protocol 00–01 [abstract]. Blood. 2009;114:321.

    Article  Google Scholar 

  30. Inaba H, Pui C-H. Glucocorticoid use in acute lymphoblastic leukaemia. Lancet Oncol. 2010;11:1096–106.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Mantadakis E, Cole PD, Kamen BA. High-dose methotrexate in acute lymphoblastic leukemia: where is the evidence for its continued use? Pharmacotherapy. 2005;25:748–55.

    Article  PubMed  CAS  Google Scholar 

  32. Larsen EC, Devidas M, Chen S, et al. Dexamethasone and high-dose methotrexate improve outcome for children and young adults with high-risk B-acute lymphoblastic leukemia: a report from Children’s Oncology Group Study AALL0232. J Clin Oncol. 2016;34:2380–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Winter SS, Dunsmore KP, Devidas M, et al. Improved survival for children and young adults with T-lineage acute lymphoblastic leukemia: results from the Children’s Oncology Group AALL0434 methotrexate randomization. J Clin Oncol. 2018;36:2926–34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Matloub Y, Bostrom BC, Hunger SP, et al. Escalating intravenous methotrexate improves event-free survival in children with standard-risk acute lymphoblastic leukemia: a report from the Children’s Oncology Group. Blood. 2011;118:243–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Woo MH, Hak LJ, Storm MC, et al. Cerebrospinal fluid asparagine concentrations after Escherichia coli asparaginase in children with acute lymphoblastic leukemia. J Clin Oncol. 1999;17:1568–73.

    Article  PubMed  CAS  Google Scholar 

  36. Rizzari C, Lanvers-Kaminsky C, Valsecchi MG, et al. Asparagine levels in the cerebrospinal fluid of children with acute lymphoblastic leukemia treated with pegylated-asparaginase in the induction phase of the AIEOP-BFM ALL 2009 study. Haematologica. 2019;104:1812–21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Kawedia JD, Liu C, Pei D, et al. Dexamethasone exposure and asparaginase antibodies affect relapse risk in acute lymphoblastic leukemia. Blood. 2012;119:1658–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Gottschalk Højfeldt S, Grell K, Abrahamsson J, et al. Relapse risk following truncation of pegylated asparaginase in childhood acute lymphoblastic leukemia. Blood. 2021;137:2373–82.

    Article  PubMed  Google Scholar 

  39. Gupta S, Wang C, Raetz EA, et al. Impact of asparaginase discontinuation on outcome in childhood acute lymphoblastic leukemia: a report from the children’s Oncology Group. J Clin Oncol. 2020;38:1897–905.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Moghrabi A, Levy DE, Asselin B, et al. Results of the Dana-Farber Cancer Institute ALL Consortium Protocol 95 – 01 for children with acute lymphoblastic leukemia. Blood. 2007;109:896–904.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Berg SL, Blaney SM, Devidas M, et al. Phase II study of nelarabine (compound 506U78) in children and young adults with refractory T-cell malignancies: a report from the Children’s Oncology Group. J Clin Oncol. 2005;23:3376–82.

    Article  PubMed  CAS  Google Scholar 

  42. Kurtzberg J, Ernst TJ, Keating MJ, et al. Phase I study of 506U78 administered on a consecutive 5-day schedule in children and adults with refractory hematologic malignancies. J Clin Oncol. 2005;23:3396–403.

    Article  PubMed  CAS  Google Scholar 

  43. Dunsmore KP, Winter SS, Devidas M, et al. Children’s Oncology Group AALL0434: a phase III randomized clinical trial testing nelarabine in newly diagnosed T-cell acute lymphoblastic leukemia. J Clin Oncol. 2020;38:3282–93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Jabbour E, O’Brien S, Kantarjian H, et al. Neurologic complications associated with intrathecal liposomal cytarabine given prophylactically in combination with high-dose methotrexate and cytarabine to patients with acute lymphocytic leukemia. Blood. 2007;109:3214–8.

    Article  PubMed  CAS  Google Scholar 

  45. Barredo JC, Devidas M, Lauer SJ, et al. Isolated CNS relapse of acute lymphoblastic leukemia treated with intensive systemic chemotherapy and delayed CNS radiation: a Pediatric Oncology Group study. J Clin Oncol. 2006;24:3142–9.

    Article  PubMed  CAS  Google Scholar 

  46. Shen S, Chen X, Cai J, et al. Effect of dasatinib vs imatinib in the treatment of pediatric Philadelphia chromosome–positive acute lymphoblastic leukemia: a randomized clinical trial. JAMA Oncol. 2020;6:358–66.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Hunger SP, Raetz EA. How I treat relapsed acute lymphoblastic leukemia in the pediatric population. Blood. 2020;136:1803–12.

    Article  PubMed  CAS  Google Scholar 

  48. Nguyen K, Devidas M, Cheng S-C, et al. Factors influencing survival after relapse from acute lymphoblastic leukemia: a Children’s Oncology Group study. Leukemia. 2008;22:2142–50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Harker-Murray PD, Thomas AJ, Wagner JE et al. Allogeneic hematopoietic cell transplantation in children with relapsed acute lymphoblastic leukemia isolated to the central nervous system. Biol Blood Marrow Transplant. 2008;14:685–92.

  50. Hastings C, Chen Y, Devidas M, et al. Late isolated central nervous system relapse in childhood B-cell acute lymphoblastic leukemia treated with intensified systemic therapy and delayed reduced dose cranial radiation: a report from the Children’s Oncology Group study AALL02P2. Pediatr Blood Cancer. 2021;68:e29256.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Brown PA, Ji L, Xu X, et al. Effect of postreinduction therapy consolidation with blinatumomab vs chemotherapy on disease-free survival in children, adolescents, and young adults with first relapse of B-cell acute lymphoblastic leukemia: a randomized clinical trial. JAMA. 2021;325:833–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Hogan LE, Brown PA, Ji L, et al. Children's Oncology Group AALL1331: phase III trial of blinatumomab in children, adolescents, and young adults with low-risk B-cell ALL in first relapse. J Clin Oncol. 2023; online ahead of print. https://doi.org/10.1200/JCO.22.02200.2023.

  53. Maude SL, Laetsch TW, Buechner J, et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med. 2018;378:439–48.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Barz Leahy A, Newman H, Li Y, et al. CD19-targeted chimeric antigen receptor T-cell therapy for CNS relapsed or refractory acute lymphocytic leukaemia: a post-hoc analysis of pooled data from five clinical trials. Lancet Haematol. 2021;8:e711–22.

    Article  Google Scholar 

  55. Jacoby E, Ghorashian S, Vormoor B, et al. CD19 CAR T-cells for pediatric relapsed acute lymphoblastic leukemia with active CNS involvement: a retrospective international study. Leukemia. 2022;36:1525–32.

    Article  PubMed  CAS  Google Scholar 

  56. Wang T, Tang Y, Cai J, et al. Coadministration of CD19- and CD22-directed chimeric antigen receptor T-cell therapy in childhood B-cell acute lymphoblastic leukemia: a single-arm, multicenter, phase II trial. J Clin Oncol. 2023;41:1670–83.

    Article  PubMed  CAS  Google Scholar 

  57. Relling MV, Rubnitz JE, Rivera GK, et al. High incidence of secondary brain tumours after radiotherapy and antimetabolites. Lancet. 1999;354:34–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Keith A. Laycock, PhD, ELS, for scientific editing of the manuscript.

Funding

This work was supported by the National Cancer Institute (Cancer Center Support CORE Grant CA21765) (S.S. and H.I.) and by the American Lebanese Syrian Associated Charities (ALSAC) (S.S. and H.I). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

SS and HI equally contributed to the writing of the manuscript; HI also provided guidance to the writing of the manuscript. HI will act as the guarantor for this manuscript.

Corresponding author

Correspondence to Hiroto Inaba.

Ethics declarations

Conflict of Interest

None.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suryaprakash, S., Inaba, H. Acute Lymphoblastic Leukemia with Central Nervous System Involvement—Challenges in Management. Indian J Pediatr 91, 59–66 (2024). https://doi.org/10.1007/s12098-023-04731-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12098-023-04731-5

Keywords

Navigation