Skip to main content
Log in

Contemporary Use of Ultrasonography in Acute Care Pediatrics

  • Review Article
  • Published:
Indian Journal of Pediatrics Aims and scope Submit manuscript

Abstract

Use of ultrasonography by clinicians at the point of care has expanded widely and rapidly. Pediatric acute care providers now leverage this valuable tool to guide procedures, diagnose pathophysiologic processes, and inform time-sensitive decisions in sick and unstable children. However, the deployment of any new technology must be packaged with training, protocols, and safeguards to optimize safety for patients, providers, and institutions. As ultrasonography is increasingly incorporated into residency, fellowship, and even medical student curricula, it is important that educators and trainees are aware of the diversity of its clinical applications. This article aims to review the current state of point-of-care ultrasonography in acute care pediatrics, with an emphasis on the literature supporting the use of this important clinical tool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Marin JR, Lewiss RE. American Academy of Pediatrics, Committee on Pediatric Emergency Medicine, 2013–2014; Society for Academic Emergency Medicine (Reviewers); American College of Emergency Physicians, Pediatric Emergency Medicine Committee, 2013–2014; World Interactive Network Focused on Critical Ultrasound Board of Directors (reviewers); American Academy of Pediatrics Committee on Pediatric Emergency Medicine 2013–2014; Society for Academic Emergency Medicine Reviewers; American College of Emergency Physicians Pediatric Emergency Medicine Committee 2013–2014; World Interactive Network Focused on Critical Ultrasound Board of Directors reviewers. Point-of-care ultrasonography by pediatric emergency physicians. Policy statement. Ann Emerg Med. 2015;65:472–8.

  2. Mitchell EO, Jones P, Snelling PJ. Ultrasound for pediatric peripheral intravenous catheter insertion: a systematic review. Pediatrics. 2022;149:e2021055523.

    Article  PubMed  Google Scholar 

  3. McGee DC, Gould MK. Preventing complications of central venous catheterization. N Engl J Med. 2003;348:1123–33.

    Article  PubMed  Google Scholar 

  4. Ishii S, Shime N, Shibasaki M, Sawa T. Ultrasound-guided radial artery catheterization in infants and small children. Pediatr Crit Care Med. 2013;14:471–3.

    Article  PubMed  Google Scholar 

  5. Moussa Pacha H, Alahdab F, Al-Khadra Y, et al. Ultrasound-guided versus palpation-guided radial artery catheterization in adult population: A systematic review and meta-analysis of randomized controlled trials. Am Heart J. 2018;204:1–8.

    Article  PubMed  Google Scholar 

  6. Nguyen J, Amirnovin R, Ramanathan R, Noori S. The state of point-of-care ultrasonography use and training in neonatal-perinatal medicine and pediatric critical care medicine fellowship programs. J Perinatol. 2016;36:972–6.

    Article  CAS  PubMed  Google Scholar 

  7. Conlon TW, Himebauch AS, Fitzgerald JC, et al. Implementation of a pediatric critical care focused bedside ultrasound training program in a large academic PICU. Pediatr Crit Care Med. 2015;16:219–26.

    Article  PubMed  Google Scholar 

  8. Conlon TW, Kantor DB, Su ER, et al. Diagnostic bedside ultrasound program development in pediatric critical care medicine: results of a national survey. Pediatr Crit Care Med. 2018;19:e561–8.

    Article  PubMed  Google Scholar 

  9. The American College of Emergency Physicians. Policy Statement. Point-of-care ultrasonography by pediatric emergency medicine physicians. 2019. Available at: https://www.acep.org/globalassets/new-pdfs/policy-statements/point-of-care-ultrasonography-by-pediatric-emergency-medicine-physicians.pdf. Accessed on 14 Aug 2022.

  10. Levitov A, Frankel HL, Blaivas M, et al. Guidelines for the appropriate use of bedside general and cardiac ultrasonography in the evaluation of critically ill patients-part ii: cardiac ultrasonography. Crit Care Med. 2016;44:1206–27.

    Article  PubMed  Google Scholar 

  11. Singh Y, Tissot C, Fraga MV, et al. International evidence-based guidelines on Point of Care Ultrasound (POCUS) for critically ill neonates and children issued by the POCUS Working Group of the European Society of Paediatric and Neonatal Intensive Care (ESPNIC). Crit Care. 2020;24:65.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Troianos CA, Hartman GS, Glas KE, et al. Councils on Intraoperative Echocardiography and Vascular Ultrasound of the American Society of Echocardiography. Guidelines for performing ultrasound guided vascular cannulation: recommendations of the American Society of Echocardiography and the Society of Cardiovascular Anesthesiologists. J Am Soc Echocardiogr. 2011;24:1291–318.

  13. Mertens L, Seri I, Marek J, et al. Writing Group of the American Society of Echocardiography; European Association of Echocardiography; Association for European Pediatric Cardiologists. Targeted Neonatal Echocardiography in the Neonatal Intensive Care Unit: practice guidelines and recommendations for training. Writing Group of the American Society of Echocardiography (ASE) in collaboration with the European Association of Echocardiography (EAE) and the Association for European Pediatric Cardiologists (AEPC). J Am Soc Echocardiogr. 2011;24:1057–78.

  14. Davis AL, Carcillo JA, Aneja RK, et al. The American College of critical care medicine clinical practice parameters for hemodynamic support of pediatric and neonatal septic shock: executive summary. Pediatr Crit Care Med. 2017;18:884–90.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Bouferrache K, Amiel JB, Chimot L, et al. Initial resuscitation guided by the Surviving Sepsis Campaign recommendations and early echocardiographic assessment of hemodynamics in intensive care unit septic patients: a pilot study. Crit Care Med. 2012;40:2821–7.

    Article  PubMed  Google Scholar 

  16. Perera P, Mailhot T, Riley D, Mandavia D. The RUSH exam: Rapid ultrasound in SHock in the evaluation of the critically lll. Emerg Med Clin North Am. 2010;28:vii.

  17. Spurney CF, Sable CA, Berger JT, Martin GR. Use of a hand-carried ultrasound device by critical care physicians for the diagnosis of pericardial effusions, decreased cardiac function, and left ventricular enlargement in pediatric patients. J Am Soc Echocardiogr. 2005;18:313–9.

    Article  PubMed  Google Scholar 

  18. Blanco P, Martinez BC. Point-of-care ultrasound in cardiopulmonary resuscitation: a concise review. J Ultrasound. 2017;20:193–8.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Link MS, Berkow LC, Kudenchuk PJ, et al. Part 7: Adult advanced cardiovascular life support: 2015 american heart association guidelines update for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation. 2015;132(18 Suppl 2):S444–64.

    PubMed  Google Scholar 

  20. Huis In 't Veld MA, Allison MG, Bostick DS, et al. Ultrasound use during cardiopulmonary resuscitation is associated with delays in chest compressions. Resuscitation. 2017;119:95–8.

  21. Tissot C, Younoszai A. Restrictive Cardiomyopathy and Pericardial Disease. In: Lai W, Mertens L, Cohen M, Geva T, editors. Echocardiography in Pediatric and Congenital Heart Disease: From Fetus to Adult. 2nd ed. West Sussex, UK: John Wiley & Sons; 2016. p. 1675–88.

    Google Scholar 

  22. Alobaidi R, Morgan C, Basu RK, et al. Association between fluid balance and outcomes in critically ill children: a systematic review and meta-analysis. JAMA Pediatr. 2018;172:257–68.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Gan H, Cannesson M, Chandler JR, Ansermino JM. Predicting fluid responsiveness in children: a systematic review. Anesth Analg. 2013;117:1380–92.

    Article  PubMed  Google Scholar 

  24. Achar SK, Sagar MS, Shetty R, et al. Respiratory variation in aortic flow peak velocity and inferior vena cava distensibility as indices of fluid responsiveness in anaesthetised and mechanically ventilated children. Indian J Anaesth. 2016;60:121–6.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Choi DY, Kwak HJ, Park HY, Kim YB, Choi CH, Lee JY. Respiratory variation in aortic blood flow velocity as a predictor of fluid responsiveness in children after repair of ventricular septal defect. Pediatr Cardiol. 2010;31:1166–70.

    Article  PubMed  Google Scholar 

  26. Yildizdas D, Aslan N. Ultrasonographic inferior vena cava collapsibility and distensibility indices for detecting the volume status of critically ill pediatric patients. J Ultrason. 2020;20:e205–9.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Feissel M, Michard F, Mangin I, Ruyer O, Faller JP, Teboul JL. Respiratory changes in aortic blood velocity as an indicator of fluid responsiveness in ventilated patients with septic shock. Chest. 2001;119:867–73.

    Article  CAS  PubMed  Google Scholar 

  28. Kutty S, Li L, Hasan R, Peng Q, Rangamani S, Danford DA. Systemic venous diameters, collapsibility indices, and right atrial measurements in normal pediatric subjects. J Am Soc Echocardiogr. 2014;27:155–62.

    Article  PubMed  Google Scholar 

  29. Pees C, Glagau E, Hauser J, Michel-Behnke I. Reference values of aortic flow velocity integral in 1193 healthy infants, children, and adolescents to quickly estimate cardiac stroke volume. Pediatr Cardiol. 2013;34:1194–200.

    Article  PubMed  Google Scholar 

  30. Fraga MV, Stoller JZ, Glau CL, et al. Seeing Is believing: ultrasound in pediatric procedural performance. Pediatrics. 2019;144:e20191401.

    Article  PubMed  Google Scholar 

  31. Gopalasingam N, Obad DS, Kristensen BS, et al. Ultrasound-guidance outperforms the palpation technique for peripheral venous catheterisation in anaesthetised toddlers: a randomised study. Acta Anaesthesiol Scand. 2017;61:601–8.

    Article  CAS  PubMed  Google Scholar 

  32. de Souza TH, Brandao MB, Nadal JAH, Nogueira RJN. Ultrasound guidance for pediatric central venous catheterization: a meta-analysis. Pediatrics. 2018;142:e20181719.

    Article  PubMed  Google Scholar 

  33. de Souza TH, Brandao MB, Santos TM, Pereira RM, Nogueira RJN. Ultrasound guidance for internal jugular vein cannulation in PICU: a randomised controlled trial. Arch Dis Child. 2018;103:952–6.

    Article  PubMed  Google Scholar 

  34. Kantor DB, Su E, Milliren CE, Conlon TW. Ultrasound guidance and other determinants of successful peripheral artery catheterization in critically ill children. Pediatr Crit Care Med. 2016;17:1124–30.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Lamperti M, Bodenham AR, Pittiruti M, et al. International evidence-based recommendations on ultrasound-guided vascular access. Intensive Care Med. 2012;38:1105–17.

    Article  PubMed  Google Scholar 

  36. Frankel HL, Kirkpatrick AW, Elbarbary M, et al. Guidelines for the appropriate use of bedside general and cardiac ultrasonography in the evaluation of critically ill patients-part i: general ultrasonography. Crit Care Med. 2015;43:2479–502.

    Article  PubMed  Google Scholar 

  37. Spencer TR, Mahoney KJ. Reducing catheter-related thrombosis using a risk reduction tool centered on catheter to vessel ratio. J Thromb Thrombolysis. 2017;44:427–34.

    Article  PubMed  Google Scholar 

  38. Katheria AC, Fleming SE, Kim JH. A randomized controlled trial of ultrasound-guided peripherally inserted central catheters compared with standard radiograph in neonates. J Perinatol. 2013;33:791–4.

    Article  CAS  PubMed  Google Scholar 

  39. Fleming SE, Kim JH. Ultrasound-guided umbilical catheter insertion in neonates. J Perinatol. 2011;31:344–9.

    Article  CAS  PubMed  Google Scholar 

  40. Kozyak BW, Fraga MV, Juliano CE, et al. Real-time ultrasound guidance for umbilical venous cannulation in neonates with congenital heart disease. Pediatr Crit Care Med. 2022;23:e257–66.

    Article  PubMed  Google Scholar 

  41. Johnson KN, Thomas T, Grove J, Jarboe MD. Insertion of peripherally inserted central catheters in neonates less than 1.5 kg using ultrasound guidance. Pediatr Surg Int. 2016;32:1053–7.

  42. Mallinson C, Bennett J, Hodgson P, Petros AJ. Position of the internal jugular vein in children. A study of the anatomy using ultrasonography. Paediatr Anaesth. 1999;9:111–4.

  43. Bhatia N, Sivaprakasam J, Allford M, Guruswamy V. The relative position of femoral artery and vein in children under general anesthesia–an ultrasound-guided observational study. Paediatr Anaesth. 2014;24:1164–8.

    Article  PubMed  Google Scholar 

  44. Htet N, Vaughn J, Adigopula S, Hennessey E, Mihm F. Needle-guided ultrasound technique for axillary artery catheter placement in critically ill patients: A case series and technique description. J Crit Care. 2017;41:194–7.

    Article  PubMed  Google Scholar 

  45. Heuvelings CC, Bélard S, Familusi MA, Spijker R, Grobusch MP, Zar HJ. Chest ultrasound for the diagnosis of paediatric pulmonary diseases: a systematic review and meta-analysis of diagnostic test accuracy. Br Med Bull. 2019;129:35–51.

    Article  PubMed  Google Scholar 

  46. Conlon TW, Nishisaki A, Singh Y, et al. Moving beyond the stethoscope: diagnostic point-of-care ultrasound in pediatric practice. Pediatrics. 2019;144:e20191402.

  47. Gargani L, Volpicelli G. How I do it: lung ultrasound. Cardiovasc Ultrasound. 2014;12:25.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Lichtenstein DA. BLUE-protocol and FALLS-protocol: two applications of lung ultrasound in the critically ill. Chest. 2015;147:1659–70.

    Article  PubMed  Google Scholar 

  49. de Souza TH, Nadal JAH, Peixoto AO, et al. Lung ultrasound in children with pneumonia: interoperator agreement on specific thoracic regions. Eur J Pediatr. 2019;178:1369–77.

    Article  PubMed  Google Scholar 

  50. Alrajab S, Youssef AM, Akkus NI, Caldito G. Pleural ultrasonography versus chest radiography for the diagnosis of pneumothorax: review of the literature and meta-analysis. Crit Care. 2013;17:R208.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Raimondi F, Rodriguez Fanjul J, Aversa S, et al. Lung Ultrasound in the Crashing Infant (LUCI) Protocol Study Group. Lung ultrasound for diagnosing pneumothorax in the critically ill neonate. J Pediatr. 2016;175:74–8.e1.

  52. Pereda MA, Chavez MA, Hooper-Miele CC, et al. Lung ultrasound for the diagnosis of pneumonia in children: a meta-analysis. Pediatrics. 2015;135:714–22.

    Article  PubMed  Google Scholar 

  53. Xin H, Li J, Hu HY. Is lung ultrasound useful for diagnosing pneumonia in children?: a meta-analysis and systematic review. Ultrasound Q. 2018;34:3–10.

    Article  PubMed  Google Scholar 

  54. Lissaman C, Kanjanauptom P, Ong C, Tessaro M, Long E, O’Brien A. Prospective observational study of point-of-care ultrasound for diagnosing pneumonia. Arch Dis Child. 2019;104:12–8.

    Article  PubMed  Google Scholar 

  55. Toma P. Lung ultrasonography may not be a reliable alternative to chest radiography in childhood pneumonia. Chest. 2017;151:244.

    Article  PubMed  Google Scholar 

  56. Havelock T, Teoh R, Laws D, Gleeson F. BTS Pleural Disease Guideline Group. Pleural procedures and thoracic ultrasound: British Thoracic Society Pleural Disease Guideline 2010. Thorax. 2010;65 Suppl 2:ii61–76.

  57. Islam M, Levitus M, Eisen L, Shiloh AL, Fein D. Lung ultrasound for the diagnosis and management of acute respiratory failure. Lung. 2020;198:1–11.

    Article  PubMed  Google Scholar 

  58. Volpicelli G, Elbarbary M, Blaivas M, et al. International Liaison Committee on Lung Ultrasound (ILC-LUS) for International Consensus Conference on Lung Ultrasound (ICC-LUS). International evidence-based recommendations for point-of-care lung ultrasound. Intensive Care Med. 2012;38:577–91.

  59. Hamilton CE, Su E, Tawfik D, et al. Pediatric Research Collaborative on Critical Ultrasound (PeRCCUS). Assessment of vocal cord motion using laryngeal ultrasound in children: a systematic review and meta-analysis. Pediatr Crit Care Med. 2021;22:e532–9.

  60. Ongkasuwan J, Ocampo E, Tran B. Laryngeal ultrasound and vocal fold movement in the pediatric cardiovascular intensive care unit. Laryngoscope. 2017;127:167–72.

    Article  PubMed  Google Scholar 

  61. Chowdhry R, Dangman B, Pinheiro JM. The concordance of ultrasound technique versus X-ray to confirm endotracheal tube position in neonates. J Perinatol. 2015;35:481–4.

    Article  CAS  PubMed  Google Scholar 

  62. Tessaro MO, Salant EP, Arroyo AC, Haines LE, Dickman E. Tracheal rapid ultrasound saline test (T.R.U.S.T.) for confirming correct endotracheal tube depth in children. Resuscitation. 2015;89:8–12.

  63. Kerrey BT, Geis GL, Quinn AM, Hornung RW, Ruddy RM. A prospective comparison of diaphragmatic ultrasound and chest radiography to determine endotracheal tube position in a pediatric emergency department. Pediatrics. 2009;123:e1039–44.

    Article  PubMed  Google Scholar 

  64. Gil-Juanmiquel L, Gratacos M, Castilla-Fernandez Y, et al. Bedside ultrasound for the diagnosis of abnormal diaphragmatic motion in children after heart surgery. Pediatr Crit Care Med. 2017;18:159–64.

    Article  PubMed  Google Scholar 

  65. Urvoas E, Pariente D, Fausser C, Lipsich J, Taleb R, Devictor D. Diaphragmatic paralysis in children: diagnosis by TM-mode ultrasound. Pediatr Radiol. 1994;24:564–8.

    Article  CAS  PubMed  Google Scholar 

  66. DiNino E, Gartman EJ, Sethi JM, McCool FD. Diaphragm ultrasound as a predictor of successful extubation from mechanical ventilation. Thorax. 2014;69:423–7.

    Article  PubMed  Google Scholar 

  67. Abdel Rahman DA, Saber S, El-Maghraby A. Diaphragm and lung ultrasound indices in prediction of outcome of weaning from mechanical ventilation in pediatric intensive care unit. Indian J Pediatr. 2020;87:413–20.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Glau CL, Conlon TW, Himebauch AS, et al. Diaphragm atrophy during pediatric acute respiratory failure is associated with prolonged noninvasive ventilation requirement following extubation. Pediatr Crit Care Med. 2020;21:e672–8.

    Article  PubMed  Google Scholar 

  69. Melniker LA, Leibner E, McKenney MG, Lopez P, Briggs WM, Mancuso CA. Randomized controlled clinical trial of point-of-care, limited ultrasonography for trauma in the emergency department: the first sonography outcomes assessment program trial. Ann Emerg Med. 2006;48:227–35.

    Article  PubMed  Google Scholar 

  70. Holmes JF, Kelley KM, Wootton-Gorges SL, et al. Effect of abdominal ultrasound on clinical care, outcomes, and resource use among children with blunt torso trauma: a randomized clinical trial. JAMA. 2017;317:2290–6.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Holmes JF, Gladman A, Chang CH. Performance of abdominal ultrasonography in pediatric blunt trauma patients: a meta-analysis. J Pediatr Surg. 2007;42:1588–94.

    Article  PubMed  Google Scholar 

  72. Cho J, Jensen TP, Reierson K, et al; Society of Hospital Medicine Point-of-care Ultrasound Task Force, Soni NJ. Recommendations on the use of ultrasound guidance for adult abdominal paracentesis: a position statement of the society of hospital medicine. J Hosp Med. 2019;14:E7–15.

  73. Mahdipour S, Saadat SNS, Badeli H, Rad AH. Strengthening the success rate of suprapubic aspiration in infants by integrating point-of-care ultrasonography guidance: A parallel-randomized clinical trial. PLoS ONE. 2021;16:e0254703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Nguyen HT, Benson CB, Bromley B, et al. Multidisciplinary consensus on the classification of prenatal and postnatal urinary tract dilation (UTD classification system). J Pediatr Urol. 2014;10:982–98.

    Article  PubMed  Google Scholar 

  75. Ng C, Tsung JW. Avoiding computed tomography scans by using point-of-care ultrasound when evaluating suspected pediatric renal colic. J Emerg Med. 2015;49:165–71.

    Article  PubMed  Google Scholar 

  76. Nixon G, Blattner K, Muirhead J, Kerse N. Rural point-of-care ultrasound of the kidney and bladder: quality and effect on patient management. J Prim Health Care. 2018;10:324–30.

    Article  PubMed  Google Scholar 

  77. Cundy TP, Gent R, Frauenfelder C, Lukic L, Linke RJ, Goh DW. Benchmarking the value of ultrasound for acute appendicitis in children. Pediatr Surg. 2016;51:1939–43.

    Article  Google Scholar 

  78. Tseng P, Berdahl C, Kearl YL, et al. Does right lower quadrant abdominal ultrasound accurately identify perforation in pediatric acute appendicitis? J Emerg Med. 2016;50:638–42.

    Article  PubMed  Google Scholar 

  79. Benabbas R, Hanna M, Shah J, Sinert R. Diagnostic accuracy of history, physical examination, laboratory tests, and point-of-care ultrasound for pediatric acute appendicitis in the emergency department: a systematic review and meta-analysis. Acad Emerg Med. 2017;24:523–51.

    Article  PubMed  Google Scholar 

  80. Lee JY, Kim JH, Choi SJ, Lee JS, Ryu JM. Point-of-care ultrasound may be useful for detecting pediatric intussusception at an early stage. BMC Pediatr. 2020;20:155.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Sivitz AB, Tejani C, Cohen SG. Evaluation of hypertrophic pyloric stenosis by pediatric emergency physician sonography. Acad Emerg Med. 2013;20:646–51.

    Article  PubMed  Google Scholar 

  82. Muchantef K, Epelman M, Darge K, Kirpalani H, Laje P, Anupindi SA. Sonographic and radiographic imaging features of the neonate with necrotizing enterocolitis: correlating findings with outcomes. Pediatr Radiol. 2013;43:1444–52.

    Article  PubMed  Google Scholar 

  83. Faingold R, Daneman A, Tomlinson G, et al. Necrotizing enterocolitis: assessment of bowel viability with color doppler US. Radiology. 2005;235:587–94.

    Article  PubMed  Google Scholar 

  84. Kim JH. Role of Abdominal US in diagnosis of NEC. Clin Perinatol. 2019;46:119–27.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

BWK, MY, TWC jointly reviewed the literature on this topic and contributed individual expertise, and co-wrote the manuscript; BWK primarily drafted the introduction, conclusion, and sections on cardiovascular assessment and vascular access, and also designed all figures and tables. MY and TWC primarily drafted the sections on thoracic and abdominal applications, respectively. All authors reviewed and critically revised the manuscript in its entirety, and consent to its submission it its current form.

Corresponding author

Correspondence to Benjamin W. Kozyak.

Ethics declarations

Guarantor

Dr. Andrew T. Costarino, Jr., Chief, Division of Cardiac Critical Care Medicine, The Children’s Hospital of Philadelphia.

Conflict of Interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 928 KB)

Supplementary file2 (DOCX 15.4 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozyak, B.W., Yuerek, M. & Conlon, T.W. Contemporary Use of Ultrasonography in Acute Care Pediatrics. Indian J Pediatr 90, 459–469 (2023). https://doi.org/10.1007/s12098-023-04475-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12098-023-04475-2

Keywords

Navigation