Skip to main content

Rh Alloimmunisation: Current Updates in Antenatal and Postnatal Management

Abstract

In spite of advances in medical science, Rh alloimmunisation remains one of the leading causes of preventable neuro-morbidities and significant neonatal hyperbilirubinemia in lower-middle income countries. Despite availability of effective antenatal preventive strategy (Anti-D), its uptake in antenatal period is low due to ignorance. Further, once diagnosed, there is lack of adequate antenatal follow up in health care facility. Some of these cases even remain undiagnosed in antenatal period only to present as a case of severe hyperbilirubinemia and kernicterus in late neonatal period. Thus, there is an urgent need for creating awareness and educating health care professionals for early detection and timely management in both antenatal and postnatal period. Following two doses of anti-D prophylaxis (one in antenatal period and one in immediate postnatal period) the incidence of Rh alloimmunisation can reduce to <1%. It is recommended to follow all Rh alloimmunised pregnancies antenatally with serial indirect Coombs test titre (till critical titre is reached) followed by serial Doppler velocimetry of middle cerebral artery in a perinatal centre where facility for intrauterine transfusion as well as advanced neonatal care is available. Postnatal management of these infants comprises of confirmation of diagnosis, aggressive phototherapy and in selective cases, double volume exchange transfusion. With appropriate antenatal and postnatal management, the prognosis of Rh alloimmunised pregnancy remains favourable and long term outcome of Rh alloimmunised infants remain comparable with their normal counterparts.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Zipursky A, Bhutani VK. Impact of rhesus disease on the global problem of bilirubin-induced neurologic dysfunction. Semin Fetal Neonatal Med. 2015;20:2–5.

    Article  Google Scholar 

  2. 2.

    Bhutani VK, Zipursky A, Blencowe H, et al. Neonatal hyperbilirubinemia and rhesus disease of the newborn: incidence and impairment estimates for 2010 at regional and global levels. Pediatr Res. 2013;74:86–100.

    Article  Google Scholar 

  3. 3.

    Zipursky A, Paul VK. The global burden of Rh disease. Arch Dis Child Fetal Neonatal Ed. 2011;96:F84–5.

    Article  Google Scholar 

  4. 4.

    Koelewijn JM, de Haas M, Vrijkotte TGM, Bonsel GJ, van der Schoot CE. One single dose of 200 microg of antenatal RhIG halves the risk of anti-D immunization and hemolytic disease of the fetus and newborn in the next pregnancy. Transfusion (Paris). 2008;48:1721–9.

    Article  Google Scholar 

  5. 5.

    Bowman JM, Chown B, Lewis M, Pollock J. Rh isoimmunization, Manitoba, 1963-75. Can Med Assoc J. 1977;116:282–4.

    PubMed  PubMed Central  CAS  Google Scholar 

  6. 6.

    Chandra T, Gupta A. Frequency of ABO and rhesus blood groups in blood donors. Asian J Transfus Sci. 2012;6:52–3.

    Article  Google Scholar 

  7. 7.

    Giri PA, Yadav S, Parhar GS, Phalke DB. Frequency of ABO and rhesus blood groups: a study from a rural tertiary care teaching hospital in India. Int J Biol Med Res. 2011;2:988–90.

    Google Scholar 

  8. 8.

    Koram SK, Sadula M, Veldurthy VS. Distribution of ABO and Rh-blood groups in blood donors at tertiary care centre. Int J Res Health Sci. 2014;2:326–30.

    Google Scholar 

  9. 9.

    Patel PA, Patel SP, Shah JV, Ozha HV. Frequency and distribution of blood groups in blood donors in west Ahmedabad-a hospital based study. Natl J Med Res. 2012;2:2002–5.

    Google Scholar 

  10. 10.

    Latoo J, Masoodi N, Bhat N, Khan G, Khadla S. The ABO and Rh blood groups in Kashmiri population. Indian J Pract Doctor. 2006;3:5–6.

    Google Scholar 

  11. 11.

    Lamba DS, Kaur R, Basu S. Clinically significant minor blood group antigens amongst north Indian donor population. Adv Hematol. 2013;2013:215454.

    Article  Google Scholar 

  12. 12.

    Pahuja S, Gupta SK, Pujani M, Jain M. The prevalence of irregular erythrocyte antibodies among antenatal women in Delhi. Blood Transfus. 2011;9:388–93.

    PubMed  PubMed Central  Google Scholar 

  13. 13.

    Varghese J, Chacko MP, Rajaiah M, Daniel D. Red cell alloimmunization among antenatal women attending a tertiary care hospital in South India. Indian J Med Res. 2013;138:68–71.

    PubMed  PubMed Central  Google Scholar 

  14. 14.

    Kennedy MS. Perinatal issues in transfusion practice. In: Roback JD, editor. Technical Manual of American Association of Blood Banks, 16th ed. Bethesda: American Association of Blood Banks; 2008. p. 626.

  15. 15.

    Nicolaides KH, Soothill PW, Clewell WH, Rodeck CH, Mibashan RS, Campbell S. Fetal haemoglobin measurement in the assessment of red cell isoimmunisation. Lancet Lond Engl. 1988;1:1073–5.

    Article  CAS  Google Scholar 

  16. 16.

    Bahado-Singh R, Oz U, Mari G, Jones D, Paidas M, Onderoglu L. Fetal splenic size in anemia due to Rh-alloimmunization. Obstet Gynecol. 1998;92:828–32.

    PubMed  CAS  Google Scholar 

  17. 17.

    Martin R, Fanaroff A, Walsh M. Fanaroff & Martin’s Neonatal-perinatal medicine: diseases of fetus and infant, 10th ed. Philadephia: Elsevier Saunders; 2015. p. 1304–5.

  18. 18.

    al-Alaiyan S, al Omran A. Late hyporegenerative anemia in neonates with rhesus hemolytic disease. J Perinat Med. 1999;27:112–5.

    Article  CAS  Google Scholar 

  19. 19.

    De Boer IP, Zeestraten ECM, Lopriore E, van Kamp IL, Kanhai HHH, Walther FJ. Pediatric outcome in Rhesus hemolytic disease treated with and without intrauterine transfusion. Am J Obstet Gynecol. 2008;198:54.e1–4.

    PubMed  Google Scholar 

  20. 20.

    Burk CD, Malatack JJ, Ramsey G. Misleading Rh phenotype and severe prolonged anemia in hemolytic disease of the newborn. Am J Dis Child. 1987;141:712–3.

    PubMed  CAS  Google Scholar 

  21. 21.

    Koenig JM, Ashton RD, De Vore GR, Christensen RD. Late hyporegenerative anemia in Rh hemolytic disease. J Pediatr. 1989;115:315–8.

    Article  CAS  Google Scholar 

  22. 22.

    Millard DD, Gidding SS, Socol ML, et al. Effects of intravascular, intrauterine transfusion on prenatal and postnatal hemolysis and erythropoiesis in severe fetal isoimmunization. J Pediatr. 1990;117:447–54.

    Article  CAS  Google Scholar 

  23. 23.

    Martinez-Portilla RJ, Lopez-Felix J, Hawkins-Villareal A, et al. Performance of fetal middle cerebral artery peak systolic velocity for prediction of anemia in untransfused and transfused fetuses: systematic review and meta-analysis. Ultrasound Obstet Gynecol. 2019;54:722–31.

    Article  CAS  Google Scholar 

  24. 24.

    Perinatology.com [Internet]. Available at: http://www.perinatology.com/. Accessed 19 Dec 2019.

  25. 25.

    Moise KJ. Management of rhesus alloimmunization in pregnancy. Obstet Gynecol. 2008;112:164–76.

    Article  Google Scholar 

  26. 26.

    Fox C, Martin W, Somerset DA, Thompson PJ, Kilby MD. Early intraperitoneal transfusion and adjuvant maternal immunoglobulin therapy in the treatment of severe red cell alloimmunization prior to fetal intravascular transfusion. Fetal Diagn Ther. 2008;23:159–63.

    Article  CAS  Google Scholar 

  27. 27.

    Nicolini U, Kochenour NK, Greco P, Letsky E, Rodeck CH. When to perform the next intra-uterine transfusion in patients with Rh allo-immunization: combined intravascular and intraperitoneal transfusion allows longer intervals. Fetal Ther. 1989;4:14–20.

    Article  CAS  Google Scholar 

  28. 28.

    Mandelbrot L, Daffos F, Forestier F, MacAleese J, Descombey D. Assessment of fetal blood volume for computer-assisted management of in utero transfusion. Fetal Ther. 1988;3:60–6.

    Article  CAS  Google Scholar 

  29. 29.

    Scheier M, Hernandez-Andrade E, Fonseca EB, Nicolaides KH. Prediction of severe fetal anemia in red blood cell alloimmunization after previous intrauterine transfusions. Am J Obstet Gynecol. 2006;195:1550–6.

    Article  Google Scholar 

  30. 30.

    Zwiers C, van der Bom JG, van Kamp IL, et al. Postponing early intrauterine transfusion with intravenous immunoglobulin treatment; the PETIT study on severe hemolytic disease of the fetus and newborn. Am J Obstet Gynecol. 2018;219:291.e1–9.

    Article  CAS  Google Scholar 

  31. 31.

    Schwartz J, Padmanabhan A, Aqui N, et al. Guidelines on the use of therapeutic apheresis in clinical practice-evidence-based approach from the Writing Committee of the American Society for Apheresis: The Seventh Special Issue. J Clin Apheresis. 2016;31:149–62.

  32. 32.

    Sahoo T, Thukral A, Sankar MJ, et al. Delayed cord clamping in Rh-alloimmunised infants: a randomised controlled trial. Eur J Pediatr. 2020;179:881–9. https://doi.org/10.1007/s00431-020-03578-8.

    Article  PubMed  CAS  Google Scholar 

  33. 33.

    Garabedian C, Rakza T, Drumez E, et al. Benefits of delayed cord clamping in red blood cell alloimmunization. Pediatrics. 2016;137:e20153236.

    Article  Google Scholar 

  34. 34.

    American Academy of Pediatrics Subcommittee on Hyperbilirubinemia. Management of hyperbilirubinemia in the newborn infant 35 or more weeks of gestation. Pediatrics. 2004;114:297–316.

    Article  Google Scholar 

  35. 35.

    Maisels MJ, Watchko JF, Bhutani VK, Stevenson DK. An approach to the management of hyperbilirubinemia in the preterm infant less than 35 weeks of gestation. J Perinatol. 2012;32:660–4.

    Article  CAS  Google Scholar 

  36. 36.

    Rawlings JS, Pettett G, Wiswell TE, Clapper J. Estimated blood volumes in polycythemic neonates as a function of birth weight. J Pediatr. 1982;101:594–9.

    Article  CAS  Google Scholar 

  37. 37.

    Louis D, More K, Oberoi S, Shah PS. Intravenous immunoglobulin in isoimmune haemolytic disease of newborn: an updated systematic review and meta-analysis. Arch Dis Child Fetal Neonatal Ed. 2014;99:F325–31.

    Article  Google Scholar 

  38. 38.

    Zwiers C, Scheffer-Rath ME, Lopriore E, de Haas M, Liley HG. Immunoglobulin for alloimmune hemolytic disease in neonates. The Cochrane Library [Internet]: John Wiley & Sons, Ltd; 2018. Available at: http://cochranelibrarywiley.com/doi/10.1002/14651858.CD003313.pub2/full. Accessed 23 June 2018.

  39. 39.

    Lindenburg IT, Smits-Wintjens VE, van Klink JM, et al. Long-term neurodevelopmental outcome after intrauterine transfusion for hemolytic disease of the fetus/newborn: The LOTUS study. Am J Obstet Gynecol. 2012;206:141.e1–8.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Pratibha B (Senior Registrar, Department of Transfusion Medicine, Apollo Adlux Hospital, Kochi, Kerala, India) for her critical inputs in preparing Table 1 of the manuscript.

Author information

Affiliations

Authors

Contributions

TS, MS: Did literature search and prepared the first draft; KMG, MG: Gave critical inputs for finalisation of the manuscript. All the authors approved the final version of manuscript as submitted. Dr. Surjit Singh, HOD Pediatrics PGIMER, Chandigarh will act as Guarantor for this paper.

Corresponding author

Correspondence to Tanushree Sahoo.

Ethics declarations

Conflict of Interest

None.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sahoo, T., Sahoo, M., Gulla, K.M. et al. Rh Alloimmunisation: Current Updates in Antenatal and Postnatal Management. Indian J Pediatr 87, 1018–1028 (2020). https://doi.org/10.1007/s12098-020-03366-0

Download citation

Keywords

  • Rh alloimmunisation
  • Rh isoimmunisation
  • Intrauterine transfusion
  • Phototherapy
  • Double volume exchange transfusion
  • Bilirubin induced neurological damage
  • Hyperbilirubinemia