Iron in Health and Disease: An Update

  • Ashutosh LalEmail author
Review Article


Iron is an essential micronutrient for oxygen transport, cellular energy metabolism, and many enzymatic reactions. Complex physiological processes have evolved for iron acquisition to meet metabolic needs while avoiding toxicity from iron-generated free radicals. Systemic iron homeostasis is centered around the regulation of iron absorption from duodenum and iron release from stores by hepcidin. Intracellular iron is maintained under tight control by iron regulatory proteins acting at post-transcriptional level. Despite these elaborate mechanisms, iron status is frequently altered by environmental or genetic influences. Iron deficiency anemia is the most common nutritional disorder affecting a quarter of the world population. Iron deficiency is associated with impaired cognitive development and reduced capacity for physical work, making it a high priority for public health initiatives. Chronic inflammation from infections or other causes limits iron availability and contributes to anemia of chronic disease. At the opposite end are conditions where iron overload leads to serious complications from organ damage. Mutations in HFE gene are the most frequent cause of hereditary hemochromatosis in European population, but rare elsewhere in the world. Iron overload develops in dyserythropoietic anemias from increased intestinal absorption. Transfusional iron overload, most often observed in thalassemia, is increasing among cancer survivors due to the use of protocols requiring intensive transfusion support. Tissue-specific brain iron overload is observed in some degenerative neurological diseases without an increase in systemic iron. New insights into iron metabolism are guiding the development of novel therapies for iron deficiency and iron overload.


Iron Hemochromatosis Anemia Hepcidin 


Compliance with Ethical Standards

Conflict of Interest



  1. 1.
    Anderson GJ, Vulpe CD. The cellular physiology of iron. In: Yehuda S, Mostofsky DI, editors. Iron Deficiency and Overload [Internet]. Totowa: Humana Press; 2009. p. 3–29. Available at: Accessed 20 Oct 2011.
  2. 2.
    Silva B, Faustino P. An overview of molecular basis of iron metabolism regulation and the associated pathologies. Biochim Biophys Acta. 1852;2015:1347–59.Google Scholar
  3. 3.
    Wang C–Y, Babitt JL. Liver iron sensing and body iron homeostasis. Blood. 2019;133:18–29.Google Scholar
  4. 4.
    Knutson MD. Iron transport proteins: gateways of cellular and systemic iron homeostasis. J Biol Chem. 2017;292:12735–43.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Ganz T, Nemeth E. Hepcidin and iron homeostasis. Biochim Biophys Acta. 1823;2012:1434–43.Google Scholar
  6. 6.
    Nemeth E, Tuttle MS, Powelson J, et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science. 2004;306:2090–3.Google Scholar
  7. 7.
    Babitt JL, Huang FW, Wrighting DM, et al. Bone morphogenetic protein signaling by hemojuvelin regulates hepcidin expression. Nat Genet. 2006;38:531–9.CrossRefPubMedGoogle Scholar
  8. 8.
    Kautz L, Jung G, Valore EV, Rivella S, Nemeth E, Ganz T. Identification of erythroferrone as an erythroid regulator of iron metabolism. Nat Genet. 2014;46:678–84.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Nemeth E, Rivera S, Gabayan V, et al. IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin. J Clin Invest. 2004;113:1271–6.Google Scholar
  10. 10.
    Brissot P, Ropert M, Le Lan C, Loréal O. Non-transferrin bound iron: a key role in iron overload and iron toxicity. Biochim Biophys Acta. 2012;1820:403–10.CrossRefPubMedGoogle Scholar
  11. 11.
    Theil EC. Ferritin: the protein nanocage and iron biomineral in health and in disease. Inorg Chem. 2013;52:12223–33.CrossRefGoogle Scholar
  12. 12.
    Anderson CP, Shen M, Eisenstein RS, Leibold EA. Mammalian iron metabolism and its control by iron regulatory proteins. Biochim Biophys Acta. 1823;2012:1468–83.Google Scholar
  13. 13.
    Kühn LC. Iron regulatory proteins and their role in controlling iron metabolism. Metallomics. 2015;7:232–43.CrossRefPubMedGoogle Scholar
  14. 14.
    Camaschella C. New insights into iron deficiency and iron deficiency anemia. Blood Rev. 2017;31:225–33.CrossRefPubMedGoogle Scholar
  15. 15.
    Lewis SM, Emmanuel JC. Global concept of iron deficiency. In: Yehuda S, Mostofsky DI, editors. Iron Deficiency and Overload [Internet]. Totowa: Humana Press; 2009. p. 299–312. Available at: Accessed 20 Oct 2011.
  16. 16.
    Alvarez–Uria G, Naik PK, Midde M, Yalla PS, Pakam R. Prevalence and severity of anaemia stratified by age and gender in rural India [Internet]. Anemia. 2014. Available at: Accessed 7 July 2019.
  17. 17.
    Cameron BM, Neufeld LM. Estimating the prevalence of iron deficiency in the first two years of life: technical and measurement issues. Nut Rev. 2011;69:S49–56.CrossRefGoogle Scholar
  18. 18.
    NFHS-4 National Report [Internet]. Available at: Accessed 7 July 2019.
  19. 19.
    Ganz T. Iron in innate immunity: starve the invaders. Curr Opin Immunol. 2009;21:63–7.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Khan FA, Fisher MA, Khakoo RA. Association of hemochromatosis with infectious diseases: expanding spectrum. Int J Infect Dis. 2007;11:482–7.CrossRefPubMedGoogle Scholar
  21. 21.
    Vento S, Cainelli F, Cesario F. Infections and thalassaemia. Lancet Infect Dis. 2006;6:226–33.CrossRefPubMedGoogle Scholar
  22. 22.
    Neuberger A, Okebe J, Yahav D, Paul M. Oral iron supplements for children in malaria-endemic areas. Cochrane Database of Systematic Reviews [Internet]. 2016. Available at: Accessed 7 July 2019.
  23. 23.
    Paganini D, Uyoga MA, Kortman GAM, et al. Prebiotic galacto-oligosaccharides mitigate the adverse effects of iron fortification on the gut microbiome: a randomised controlled study in Kenyan infants. Gut. 2017;66:1956–67.Google Scholar
  24. 24.
    Weiss G, Ganz T, Goodnough LT. Anemia of inflammation. Blood. 2019;133:40–50.CrossRefPubMedGoogle Scholar
  25. 25.
    Theurl I, Aigner E, Theurl M, et al. Regulation of iron homeostasis in anemia of chronic disease and iron deficiency anemia: diagnostic and therapeutic implications. Blood. 2009;113:5277–86.Google Scholar
  26. 26.
    Du X, She E, Gelbart T, et al. The serine protease TMPRSS6 is required to sense iron deficiency. Science. 2008;320:1088–92.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Nai A, Pagani A, Silvestri L, et al. TMPRSS6 rs855791 modulates hepcidin transcription in vitro and serum hepcidin levels in normal individuals. Blood. 2011;118:4459–62.Google Scholar
  28. 28.
    Bhatia P, Singh A, Hegde A, Jain R, Bansal D. Systematic evaluation of paediatric cohort with iron refractory iron deficiency anaemia (IRIDA) phenotype reveals multiple TMPRSS6 gene variations. Br J Haematol. 2017;177:311–8.CrossRefPubMedGoogle Scholar
  29. 29.
    Sourabh S, Bhatia P, Jain R. Favourable improvement in haematological parameters in response to oral iron and vitamin C combination in children with iron refractory iron deficiency anemia (IRIDA) phenotype. Blood Cells Mol Dis. 2019;75:26–9.CrossRefPubMedGoogle Scholar
  30. 30.
    Powell LW, Seckington RC, Deugnier Y. Haemochromatosis. Lancet. 2016;388:706–16.CrossRefPubMedGoogle Scholar
  31. 31.
    Pietrangelo A. Non-HFE hemochromatosis. Semin Liver Dis. 2005;25:450–60.CrossRefPubMedGoogle Scholar
  32. 32.
    Sandhu K, Flintoff K, Chatfield MD, et al. Phenotypic analysis of hemochromatosis subtypes reveals variations in severity of iron overload and clinical disease. Blood. 2018;132:101–10.Google Scholar
  33. 33.
    Allen KJ, Gurrin LC, Constantine CC, et al. Iron-overload–related disease in HFE hereditary hemochromatosis. New Engl J Med. 2008;358:221–30.Google Scholar
  34. 34.
    Lok CY, Merryweather-Clarke AT, Viprakasit V, et al. Iron overload in the Asian community. Blood. 2009;114:20–5.Google Scholar
  35. 35.
    Colah RB, Gorakshakar A. Control of thalassemia in India. Thalassemia Reports [Internet]. 2014;4. Available at: Accessed 30 Sep 2014.
  36. 36.
    Ganz T, Jung G, Naeim A, et al. Immunoassay for human serum erythroferrone. Blood. 2017;130:1243–6.Google Scholar
  37. 37.
    Czaja AJ. Review article: iron disturbances in chronic liver diseases other than haemochromatosis – pathogenic, prognostic, and therapeutic implications. Aliment Pharmacol Ther. 2019;49:681–701.CrossRefPubMedGoogle Scholar
  38. 38.
    Sikorska K, Bernat A, Wróblewska A. Molecular pathogenesis and clinical consequences of iron overload in liver cirrhosis. Hepatobiliary Pancreat Dis Int. 2016;15:461–79.CrossRefPubMedGoogle Scholar
  39. 39.
    Porter JB, Garbowski M. The pathophysiology of transfusional iron overload. Hematol/Oncol Clin North Am. 2014;28:683–701.CrossRefGoogle Scholar
  40. 40.
    Ruccione KS, Wood JC, Sposto R, Malvar J, Chen C, Freyer DR. Characterization of transfusion-derived iron deposition in childhood cancer survivors. Cancer Epidemiol Biomark Prev. 2014;23:1913–9.CrossRefGoogle Scholar
  41. 41.
    Chiang S, Kovacevic Z, Sahni S, et al. Frataxin and the molecular mechanism of mitochondrial iron-loading in Friedreich’s ataxia. Clin Sci. 2016;130:853–70.Google Scholar
  42. 42.
    Hayflick SJ, Kurian MA, Hogarth P. Neurodegeneration with brain iron accumulation. In: Geschwind DH, Paulson HL, Klein C, editors. Handbook of Clinical Neurology [Internet]: Elsevier; 2018. p. 293–305. Available at: Accessed 7 July 2019.
  43. 43.
    Klopstock T, Tricta F, Neumayr L, et al. Safety and efficacy of deferiprone for pantothenate kinase-associated neurodegeneration: a randomised, double-blind, controlled trial and an open-label extension study. Lancet Neurol. 2019;18:631–42.Google Scholar

Copyright information

© Dr. K C Chaudhuri Foundation 2019

Authors and Affiliations

  1. 1.Hematology/Oncology, Department of PediatricsUniversity of CaliforniaSan FranciscoUSA

Personalised recommendations