Skip to main content

Advertisement

Log in

CRISPR-Cas9 Probing of Infectious Diseases and Genetic Disorders

  • Review Article
  • Published:
The Indian Journal of Pediatrics Aims and scope Submit manuscript

Abstract

The ability to precisely change the deoxyribonucleic acid (DNA) bases at specific sites offers tremendous advantages in the field of molecular biology and medical biotechnology. Identification of Clustered Regularly-Interspaced Short Palindromic Repeats (CRISPR), revelation of its role in prokaryotic adaptive immunity and subsequent conversion into genome and epigenome engineering system are the landmark research progresses of the decade. The possibilities of deciphering the molecular mechanisms of the disease, identifying the disease targets, generating the disease models, validating the drug targets, developing resistance to the infection and correcting the genotype have brought off much enthusiasm in the field of infectious diseases and genetic disorders. This review focuses on CRISPR/Cas9’s impact in the field of infection and genetic disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Durai S, Mani M, Kandavelou K, Wu J, Porteus MH, Chandrasegaran S. Zinc finger nucleases: custom-designed molecular scissors for genome engineering of plant and mammalian cells. Nucleic Acids Res. 2005;33:5978–90.

    Article  CAS  Google Scholar 

  2. Jiang F, Doudna JA. CRISPR-Cas9 structures and mechanisms. Annu Rev Biophys. 2017;46:505–29.

    Article  CAS  Google Scholar 

  3. Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol. 1987;169:5429–33.

    Article  CAS  Google Scholar 

  4. Barrangou R, Doudna JA. Applications of CRISPR technologies in research and beyond. Nat Biotechnol. 2016;34:933–41.

    Article  CAS  Google Scholar 

  5. Mali P, Yang L, Esvelt KM, et al. RNA-guided human genome engineering via Cas9. Science. 2013;339:823–6.

    Article  CAS  Google Scholar 

  6. Cong L, Ran FA, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339:819–23.

    Article  CAS  Google Scholar 

  7. Liu JJ, Orlova N, Oakes BL, et al. CasX enzymes comprise a distinct family of RNA-guided genome editors. Nature. 2019;566:218–23.

    Article  CAS  Google Scholar 

  8. Wang T, Wei JJ, Sabatini DM, Lander ES. Genetic screens in human cells using the CRISPR-Cas9 system. Science. 2014;343:80–4.

    Article  CAS  Google Scholar 

  9. Virreira Winter S, Zychlinsky A, Bardoel BW. Genome-wide CRISPR screen reveals novel host factors required for Staphylococcus aureus α-hemolysin-mediated toxicity. Sci Rep. 2016;6:24242.

    Article  CAS  Google Scholar 

  10. Strutt SC, Torrez RM, Kaya E, Negrete OA, Doudna JA. RNA-dependent RNA targeting by CRISPR-Cas9. Elife. 2018;7:pii:e32724.

  11. Pardee K, Green AA, Takahashi MK, et al. Rapid, low-cost detection of Zika virus using programmable biomolecular components. Cell. 2016;165:1255–66.

    Article  CAS  Google Scholar 

  12. Guk K, Keem JO, Hwang SG, et al. A facile, rapid and sensitive detection of MRSA using a CRISPR-mediated DNA FISH method, antibody-like dCas9/sgRNA complex. Biosens Bioelectron. 2017;95:67–71.

    Article  CAS  Google Scholar 

  13. Gootenberg JS, Abudayyeh OO, Lee JW, et al. Nucleic acid detection with CRISPR-Cas13a/C2c2. Science. 2017;356:438–42.

    Article  CAS  Google Scholar 

  14. Chen JS, Ma E, Harrington LB, et al. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science. 2018;360:436–9.

    Article  CAS  Google Scholar 

  15. Li H, Sheng C, Wang S, et al. Removal of integrated hepatitis B virus DNA using CRISPR-Cas9. Front Cell Infect Microbiol. 2017;7:91.

    PubMed  PubMed Central  Google Scholar 

  16. Strich JR, Chertow DS. CRISPR-Cas biology and its application to infectious diseases. J Clin Microbiol. 2019;57: ISSN: 1098-660x.

  17. Tebas P, Stein D, Tang WW, et al. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med. 2014;370:901–10.

    Article  CAS  Google Scholar 

  18. Soldner F, Hockemeyer D, Beard C, et al. Parkinson's disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell. 2009;136:964–77.

    Article  CAS  Google Scholar 

  19. Ebert AD, Yu J, Rose FF Jr, et al. Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature. 2009;457:277–80.

    Article  CAS  Google Scholar 

  20. Niu Y, Shen B, Cui Y, et al. Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell. 2014;156:836–43.

    Article  CAS  Google Scholar 

  21. Sato K, Oiwa R, Kumita W, et al. Generation of a nonhuman primate model of severe combined immunodeficiency using highly efficient genome editing. Cell Stem Cell. 2016;19:127–38.

    Article  CAS  Google Scholar 

  22. Ohmori T, Nagao Y, Mizukami H, et al. CRISPR/Cas9-mediated genome editing via postnatal administration of AAV vector cures haemophilia B mice. Sci Rep. 2017;7:4159.

    Article  Google Scholar 

  23. DeWitt MA, Magis W, Bray NL, et al. Selection-free genome editing of the sickle mutation in human adult hematopoietic stem/progenitor cells. Sci Transl Med. 2016;8:360ra134.

    Article  Google Scholar 

  24. Ramalingam S, Annaluru N, Kandavelou K, Chandrasegaran S. TALEN-mediated generation and genetic correction of disease-specific human induced pluripotent stem cells. Curr Gene Ther. 2014;14:461–72.

    Article  CAS  Google Scholar 

  25. Pavel-Dinu M, Wiebking V, Dejene BT, et al. Author correction: gene correction for SCID-X1 in long-term hematopoietic stem cells. Nat Commun. 2019;10:2021.

    Article  Google Scholar 

  26. Schubert MS, Cedrone E, Neun B, Behlke MA, Dobrovolskaia MA. Chemical modification of CRISPR gRNAs eliminate type I interferon responses in human peripheral blood mononuclear cells. J Cytokine Biol. 2018. https://doi.org/10.4172/2576-3881.1000121.

Download references

Author information

Authors and Affiliations

Authors

Contributions

SR and ST wrote the manuscript. SR is the guarantor for this paper.

Corresponding authors

Correspondence to Sivaprakash Ramalingam or Saravanabhavan Thangavel.

Ethics declarations

Conflict of Interest

None.

Source of Funding

SR acknowledges Department of Biotechnology for the financial support. ST is supported by SERB (ECR/2015/000570) and Department of biotechnology (BT/PR26901/MED/31/377/2017).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramalingam, S., Thangavel, S. CRISPR-Cas9 Probing of Infectious Diseases and Genetic Disorders. Indian J Pediatr 86, 1131–1135 (2019). https://doi.org/10.1007/s12098-019-03037-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12098-019-03037-9

Keywords

Navigation