Advertisement

Genomics and Radiogenomics in Inherited Neurometabolic Disorders – A Practical Primer for Pediatricians

  • Sniya Valsa Sudhakar
  • Karthik Muthusamy
  • Gautham Arunachal
  • Manohar ShroffEmail author
Review Article
  • 53 Downloads

Abstract

Advances in genetics has revolutionised the way we understand, diagnose and manage neurological disorders. Notwithstanding the fact that genetic confirmation has already become standard of care in routine clinical practice, radiological and clinical phenotyping has not diminished in value; in fact it has found an enhanced role in guiding and interpreting genetic test results. Inherited neurometabolic disorders are a prominent group of disorders which are seen commonly in clinical practice and many are potentially treatable. The concept of Radiogenomics is the bridge from phenotype to genotype and the strength of association varies widely across different inherited metabolic diseases. Understanding the strengths and limitations of these correlations forms the basis of success of multidisciplinary approach to diagnose these disorders. In this article authors give a brief overview of the genetic basis of a disease, available genetic tests and the prominent role of radiology in contemplating a diagnostic suspicion and guiding further confirmatory tests.

Keywords

Radiogenomics Next generation sequencing Whole exome sequencing Mitochondrial diseases Genetics Inborn errors of metabolism Neurometabolic disorders 

Notes

Authors’ Contribution

SVS: Prepared the draft, figures and references of manuscript; KM: Prepared clinical vignettes, tables, collected patient data; GA: Helped prepare the draft and suggestions to improve. MS: Finalized and approved the manuscript, helped with further referencing and will act as guarantor for this paper.

Compliance with Ethical Standards

Conflict of Interest

None.

Source of Funding

None.

Supplementary material

12098_2019_2860_MOESM1_ESM.docx (18 kb)
ESM 1 (DOCX 17.6 kb)

References

  1. 1.
    Vasquez ML, Renault IZ.  Understanding genetics in neuroimaging. Neuroimag Clin N Am. 2015;25:1–16.Google Scholar
  2. 2.
    Swaiman KF. Swaiman's Pediatric Neurology: Principles and Practice. Edinburgh: Elsevier Saunders; 2012.Google Scholar
  3. 3.
    Biesecker LG, Green RC. Diagnostic clinical genome and exome sequencing. N Engl J Med. 2014;370:2418–25.Google Scholar
  4. 4.
    Xue Y, Ankala A, Wilcox WR, Hegde MR. Solving the molecular diagnostic testing conundrum for Mendelian disorders in the era of next-generation sequencing: single-gene, gene panel, or exome/genome sequencing. Genet Med. 2015;17:444–51.CrossRefGoogle Scholar
  5. 5.
    Fogel BI. Genetic and genomic testing for neurologic disease in clinical practice. In: Geschwind DH, Paulson HL, Klein C, editors. Handbook of Clinical Neurology, vol. 147 (3rd series), Neurogenetics, Part I. Amsterdam: Elsevier; 2018. p. 11–22.Google Scholar
  6. 6.
    Nunes J, Loureiro S, Carvalho S, et al. Brain MRI findings as an important diagnostic clue in glutaric aciduria type 1. Neuroradiol J. 2013;26:155–61.Google Scholar
  7. 7.
    Clark JF, Cecil KM. Diagnostic methods and recommendations for the cerebral creatine deficiency syndromes. Pediatr Res. 2015;77:398–405.CrossRefGoogle Scholar
  8. 8.
    Mercimek-Mahmutoglu S, Salomons GS. Creatine Deficiency Syndromes. 2009 Jan 15 [Updated 2015 Dec 10]. In: Adam MP, Ardinger HH, Pagon RA, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2018. Available at: https://www.ncbi.nlm.nih.gov/books/NBK3794/. Accessed 8 Sep 2018.
  9. 9.
    Kruer MC, Boddaert N. Neurodegeneration with brain iron accumulation: a diagnostic algorithm. Semin Pediatr Neurol. 2012;19:67–74.CrossRefGoogle Scholar
  10. 10.
    Steenweg ME, Salomons GS, Yapici Z, et al. L-2-hydroxyglutaric aciduria: pattern of MR imaging abnormalities in 56 patients. Radiology. 2009;251:856–65.CrossRefGoogle Scholar
  11. 11.
    Reddy N, Calloni SF, Vernon HJ, Bolshauser E, Huisman TAGM, Soares BP. Neuroimaging findings of organic acidemias and aminoacidopathies. Radiographics. 2018;38:912–31.Google Scholar
  12. 12.
    Tuschl K, Clayton PT, Gospe SM Jr, et al. Dystonia/Parkinsonism, Hypermanganesemia, Polycythemia, and Chronic Liver Disease. 2012 Aug 30 [Updated 2017 Feb 9]. In: Adam MP, Ardinger HH, Pagon RA, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2018. Available at: https://www.ncbi.nlm.nih.gov/books/NBK100241/. Accessed 8 Sept 2018.
  13. 13.
    Van der Knaap MS, Valk J. Magnetic Resonance of Myelination and Myelin Disorders . Berlin:Springer. 2005.Google Scholar
  14. 14.
    Manara R, D'Agata L, Rocco MC, et al. Neuroimaging changes in Menkes disease, part 1. Am J Neuroradiol. 2017;38:1850–7.Google Scholar
  15. 15.
    Steenweg ME, Vanderver A, Blaser S, et al. Magnetic resonance imaging pattern recognition in hypomyelinating disorders. Brain. 2010;133:2971–82.CrossRefGoogle Scholar
  16. 16.
    Shashi V, McConkie-Rosell A, Rosell B, et al. The utility of the traditional medical genetics diagnostic evaluation in the context of next-generation sequencing for undiagnosed genetic disorders. Genet Med. 2014;16:176–82.CrossRefGoogle Scholar
  17. 17.
    Paulson H. Repeat expansion diseases. In: Geschwind DH, Paulson HL, Klein C, editors. Handbook of Clinical Neurology, vol. 147 (3rd series) Neurogenetics, Part I. Amsterdam: Elsevier; 2018. p. 105–23.Google Scholar
  18. 18.
    Davis RI, Liang C, Sue CM, et al. Mitochondrial diseases. In: Geschwind DH, Paulson HL, Klein C, editors. Handbook of Clinical Neurology, vol. 147 (3rd series) Neurogenetics, Part I. Amsterdam: Elsevier; 2018. p. 125–41.Google Scholar
  19. 19.
    Kim JH, Kim HJ. Childhood X-linked adrenoleukodystrophy: clinical-pathologic overview and MR imaging manifestations at initial evaluation and follow-up. Radiographics. 2005;25:619–31.CrossRefGoogle Scholar
  20. 20.
    Provenzale JM, Peddi S, Kurtzberg J, Poe MD, Mukundan S, Escolar M. Correlation of neurodevelopmental features and MRI findings in infantile Krabbe's disease. Am J Roentgenol. 2009;192:59–65.CrossRefGoogle Scholar
  21. 21.
    Erol I, Alehan F, Pourbagher MA, Canan O, Vefa YS. Neuroimaging findings in infantile GM1 gangliosidosis. Eur J Paediatr Neurol. 2006;10:245–8.CrossRefGoogle Scholar
  22. 22.
    Hajirnis O, Udwadia-Hegde A. Chronic GM1 gangliosidosis with characteristic “Wish Bone Sign”on brain MRI. Another type of neurodegeneration with brain iron accumulation? Mov Disord Clin Pract. 2015;2:323–5.Google Scholar
  23. 23.
    Chinnery PF, Hudson G. Mitochondrial genetics. Br Med Bull. 2013;106:135–59.CrossRefGoogle Scholar
  24. 24.
    Lieber DS, Calvo SE, Shanahan K, et al. Targeted exome sequencing of suspected mitochondrial disorders. Neurology. 2013;80:1762–70.CrossRefGoogle Scholar
  25. 25.
    Van der Knaap MS, Salomons GS. Leukoencephalopathy with Brain Stem and Spinal Cord Involvement and Lactate Elevation. 2010 May 25 [Updated 2015 Feb 12]. In: Adam MP, Ardinger HH, Pagon RA, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2018. Available at: https://www.ncbi.nlm.nih.gov/books/NBK43417/. Accessed 8 Sept 2018.
  26. 26.
    Sonam K, Khan NA, Bindu PS, et al. Clinical and magnetic resonance imaging findings in patients with Leigh syndrome and SURF1 mutations. Brain Dev. 2014;36:807–12.Google Scholar
  27. 27.
    Longo MG, Vairo F,Souza CF,Giugliani R, Vedolin LM. Brain imaging and genetic risk in the pediatric population, part 1 inherited metabolic diseases. Neuroimaging Clin N Am.2015; 25:31–51.Google Scholar
  28. 28.
    Bricout M, Grévent D, Lebre AS, et al. Brain imaging in mitochondrial respiratory chain deficiency: combination of brain MRI features as a useful tool for genotype/phenotype correlations. J Med Genet. 2014;51:429–35.CrossRefGoogle Scholar
  29. 29.
    Pauli W, Zavcki A, Krzysztalowski A, Walecka A. CT and MRI imaging of the brain in MELAS syndrome. Pol J Radiol. 2013;78:61–5.CrossRefGoogle Scholar
  30. 30.
    Wu X, Wu W,Pan W,Liu K, Zhang H-L. Acute necrotizing encephalopathy: an underrecognized clinicoradiologic disorder. Mediators Inflamm. 2015.  https://doi.org/10.1155/2015/792578.
  31. 31.
    Neilson DE, Adams MD, Orr CMD, et al. Infection-triggered familial or recurrent cases of acute necrotizing encephalopathy caused by mutations in a component of the nuclear pore, RANBP2. Am J Hum Genet. 2009;84:44–51.CrossRefGoogle Scholar
  32. 32.
    Labelle-Dumais C, Dilsworth DJ, Harrington EP, et al. COL4A1 mutations cause ocular dysgenesis, neuronal localization defects, and myopathy in mice and walker-warburg syndrome in humans. PLoS Genet. 2011;7:e1002062.Google Scholar
  33. 33.
    Munot P, Saunders DE, Milewicz DM, et al. A novel distinctive cerebrovascular phenotype is associated with heterozygous Arg179 ACTA2 mutations. Brain. 2012;135:2506–14.CrossRefGoogle Scholar
  34. 34.
    D'Arco F, Alves CA, Rayband C, et al. Expanding the distinctive neuroimaging phenotype of ACTA2 mutations. Am J Neuroradiol. 2018;39:2126–3.CrossRefGoogle Scholar
  35. 35.
    Abdel-Hamid MS, Abdel-Salam GMH, Issa MY, Emam BA, Zaki MS. Band-like calcification with simplified gyration and polymicrogyria: report of 10 new families and identification of five novel OCLN mutations. J Hum Genet. 2017;62:553–9.CrossRefGoogle Scholar
  36. 36.
    Crow YJ. Aicardi-Goutières Syndrome. 2005 Jun 29 [Updated 2016 Nov 22]. In: Adam MP, Ardinger HH, Pagon RA, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2018. Available at: https://www.ncbi.nlm.nih.gov/books/NBK1475/. Accessed 8 Sept 2018.
  37. 37.
    Fitzgerald NE, Macclain KL. Imaging characteristics of hemophagocytic lymphohistiocytosis. Pediatr Radiol. 2003;33:392–401.Google Scholar
  38. 38.
    Bird TD, Smith CO. Clinical approach to the patient with neurogenetic disease. In: Geschwind DH, Paulson HL, Klein C, editors. Handbook of Clinical Neurology, vol. 147 (3rd series) Neurogenetics, Part I. Amsterdam: Elsevier; 2018. p. 3–8.Google Scholar
  39. 39.
    Blaser SI, Steinlin M, Al-Maawali A, Yoon G. The pediatric cerebellum in inherited neurodegenerative disorders: a pattern-recognition approach. Neuroimaging Clin N Am. 2016;26:373–416.CrossRefGoogle Scholar
  40. 40.
    Steenweg ME, Wolf NI, Schieving JH, et al. Novel hypomyelinating leukoencephalopathy affecting early myelinating structures. Arch Neurol. 2012;69:125–8.CrossRefGoogle Scholar

Suggested Resources

  1. Online Mendelian Inheritance in Man (OMIM) (http://www.ncbi.nlm.nih.gov/omim).
  2. Genetic Testing Registry (www.ncbi.nlm.nih.gov/gtr).
  3. Human Gene Mutation Database (www.biobase-international.com/product/hgmd).

Copyright information

© Dr. K C Chaudhuri Foundation 2019

Authors and Affiliations

  1. 1.Department of RadiodiagnosisChristian Medical College and HospitalVelloreIndia
  2. 2.Department of Neurological SciencesChristian Medical College and HospitalVelloreIndia
  3. 3.Department of Human GeneticsNIMHANS (National Institute of Mental Health and Neurosciences)BangaloreIndia
  4. 4.Department of Diagnostic Imaging, Hospital for Sick Children / Medical ImagingUniversity of TorontoTorontoCanada

Personalised recommendations