Leber’s Congenital Amaurosis and Gene Therapy

Review Article

Abstract

Retinal blindness is an important cause of pediatric visual loss. Leber’s congenital amaurosis (LCA) is one of these causes, often wrongly included in the spectrum of retinitis pigmentosa. The disease has become the center of research after initial reports of success in management with gene therapy. This review discusses in brief the clinical presentation and investigative modalities used in LCA. Further, the road to gene discovery and details of currently applied gene therapy are presented. LCA is one of the first successfully managed human diseases and offers an entirely new dimension in ocular therapeutics.

Keywords

Leber's congenital amaurosis Gene therapy Pediatric blindness 

References

  1. 1.
    Cantani A, Bellioni P, Bamonte G, Salvinelli F, Bamonte MT. Seven hereditary syndromes with pigmentary retinopathy. a review and differential diagnosis. Clin Pediatr (Phila). 1985;24:578–83.CrossRefGoogle Scholar
  2. 2.
    Gregory-Evans K, Pennesi ME, Weleber RG. Retinitis pigmentosa and allied disorders. In: Ryan SJ, editor. Retina. Chapter 40. 5th ed. New York: Elsevier; 2013. p. 761–835.Google Scholar
  3. 3.
    Shintani K, Shechtman DL, Gurwood AS. Review and update: current treatment trends for patients with retinitis pigmentosa. Optometry. 2009;80:384–401.CrossRefPubMedGoogle Scholar
  4. 4.
    Trichonas G, Traboulsi EI, Ehlers JP. Correlation of ultra-widefield fundus autofluorescence patterns with the underlying genotype in retinal dystrophies and retinitis pigmentosa. Ophthalmic Genet. 2016;23:1–5.CrossRefGoogle Scholar
  5. 5.
    Leber T. Ueber retinitis pigmentosa und angeborene amaurose. Archiv für Opthalmologie. 1869;15:1–25.Google Scholar
  6. 6.
    Leber T. Die Krankheiten der Netzhaut. In: Saemish T, editor. Graefe Handbuch der gesamten Augenheilkunde. 2nd ed. Leipzig: W. Engelman; 1916. p. 1076–225.Google Scholar
  7. 7.
    Paunescu K, Wabbels B, Preising MN, Lorenz B. Longitudinal and cross-sectional study of patients with early-onset severe retinal dystrophy associated with RPE65 mutations. Graefes Arch Clin Exp Ophthalmol. 2005;243:417–26.CrossRefPubMedGoogle Scholar
  8. 8.
    Weleber RG, Michaelides M, Trzupek KM, Stover NB, Stone EM. The phenotype of severe early childhood onset retinal dystrophy (SECORD) from mutation of RPE65 and differentiation from Leber congenital amaurosis. Invest Ophthalmol Vis Sci. 2011;52:292–302.CrossRefPubMedGoogle Scholar
  9. 9.
    Franceschetti A, Dieterlé P. Importance diagnostique et pronostique de l’électrorétinogramme (ERG) dans les dégénérescences tapéto-rétiniennes avec rétrécissement du champ visuel et héméralopie. Confinia Neurol. 1954;14:184–6.CrossRefGoogle Scholar
  10. 10.
    Koenekoop RK. An overview of Leber congenital amaurosis: model to understand human retinal development. Surv Ophthalmol. 2004;49:379–98.CrossRefPubMedGoogle Scholar
  11. 11.
    den Hollander AI, Roepman R, Koenekoop RK, Cremers FP. Leber congenital amaurosis: genes, proteins and disease mechanisms. Prog Retin Eye Res. 2008;27:391–419.CrossRefGoogle Scholar
  12. 12.
    Pinckers AJL. Leber’s congenital amaurosis as conceived by Leber. Ophthalmologica. 1979;179:48–51.CrossRefPubMedGoogle Scholar
  13. 13.
    Alkharashi M, Fulton AB. Available evidence on leber congenital amaurosis and gene therapy. Semin Ophthalmol. 2017;32:14–21.CrossRefPubMedGoogle Scholar
  14. 14.
    Arcot Sadagopan K, Battista R, Keep RB, Capasso JE, Levin AV. Autosomal-dominant Leber congenital amaurosis caused by a heterozygous CRX mutation in a father and son. Ophthalmic Genet. 2015;36:156–9.CrossRefPubMedGoogle Scholar
  15. 15.
    Redmond TM, Yu S, Lee E, et al. Rpe65 is necessary for production of 11-cis-vitamin A in the retinal visual cycle. Nat Genet. 1998;20:344–51.CrossRefPubMedGoogle Scholar
  16. 16.
    Perrault I, Rozet JM, Calvas P, et al. Retinal-specific guanylate cyclase gene mutations in Leber’s congenital amaurosis. Nat Genet. 1996;14:61–4.CrossRefGoogle Scholar
  17. 17.
    Freund CL, Wang QL, Chen S, et al. De novo mutations in the CRX homeobox gene associated with Leber congenital amaurosis. Nat Genet. 1998;18:311–2.CrossRefPubMedGoogle Scholar
  18. 18.
    Franceschetti A. Rubéola pendant la grossesse et cataracte congenitale chez l’enfant, accompagnée du phenomène digito-oculaire. Ophthalmologica. 1947;114:332–9.Google Scholar
  19. 19.
    Elder MJ. Leber congenital amaurosis and its association with keratoconus and keratoglobus. J Pediatr Ophthalmol Strabismus. 1994;31:38–40.PubMedGoogle Scholar
  20. 20.
    Foxman SG, Heckenlively JR, Bateman JB, et al. Classification of congenital and early onset retinitis pigmentosa. Arch Ophthalmol. 1985;103:1502–6.CrossRefPubMedGoogle Scholar
  21. 21.
    Van Hooser JP, Aleman TS, He YG, et al. Rapid restoration of visual pigment and function with oral retinoid in a mouse model of childhood blindness. Proc Natl Acad Sci U S A. 2000;97:8623–8.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Zhang T, Baehr W, Fu Y. Chemical chaperone TUDCA preserves cone photoreceptors in a mouse model of Leber congenital amaurosis. Invest Ophthalmol Vis Sci. 2012;53:3349–56.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Yang F, Ma H, Belcher J, et al. Targeting iodothyronine deiodinases locally in the retina is a therapeutic strategy for retinal degeneration. FASEB J. 2016;30:4313–25.CrossRefPubMedGoogle Scholar
  24. 24.
    Waardenburg PJ, Schappert-Kimmijser J. On various recessive biotypes of Leber's congenital amaurosis. Acta Ophthalmol. 1963;41:317–20.CrossRefGoogle Scholar
  25. 25.
    Wang SY, Zhang Q, Zhang X, Zhao PQ. Comprehensive analysis of genetic variations in strictly-defined Leber congenital amaurosis with whole-exome sequencing in Chinese. Int J Ophthalmol. 2016;9:1260–4.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Chacon-Camacho OF, Zenteno JC. Review and update on the molecular basis of Leber congenital amaurosis. World J Clin Cases. 2015;3:112–24.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Li Y, Wang H, Peng J, et al. Mutation survey of known LCA genes and loci in the Saudi Arabian population. Invest Ophthalmol Vis Sci. 2009;50:1336–43.CrossRefPubMedGoogle Scholar
  28. 28.
    Perrault I, Rozet JM, Calvas P, et al. Retinal-specific guanylate cyclase gene mutations in Leber's congenital amaurosis. Nat Genet. 1996;14:461–4.CrossRefPubMedGoogle Scholar
  29. 29.
    Marlhens F, Bareil C, Griffoin JM, et al. Mutations in RPE65 cause Leber's congenital amaurosis. Nat Genet. 1997;17:139–41.CrossRefPubMedGoogle Scholar
  30. 30.
    Maguire AM, Simonelli F, Pierce EA, et al. Safety and efficacy of gene transfer for Leber’s congenital amaurosis. N Engl J Med. 2008;358:2240–8.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Bainbridge JW, Smith AJ, Barker SS, et al. Effect of gene therapy on visual function in Leber’s congenital amaurosis. N Engl J Med. 2008;358:2231–9.CrossRefPubMedGoogle Scholar
  32. 32.
    Cideciyan AV, Aleman TS, Boye SL, et al. Human gene therapy for RPE65 isomerase deficiency activates the retinoid cycle of vision but with slow rod kinetics. Proc Natl Acad Sci U S A. 2008;105:15112–7.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Hauswirth WW, Aleman TS, Kaushal S, et al. Treatment of Leber congenital amaurosis due to RPE65 mutations by ocular subretinal injection of adeno-associated virus gene vector: short-term results of a phase I trial. Hum Gene Ther. 2008;19:979–90.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Maguire AM, High KA, Auricchio A, et al. Age-dependent effects of RPE65 gene therapy for Leber’s congenital amaurosis: a phase 1 dose-escalation trial. Lancet. 2009;374:1597–605.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Testa F, Maguire AM, Rossi S, et al. Three-year follow-up after unilateral subretinal delivery of adeno-associated virus in patients with Leber congenital amaurosis type 2. Ophthalmology. 2013;120:1283–91.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Bennett J, Ashtari M, Wellman J, et al. AAV2 gene therapy readministration in three adults with congenital blindness. Sci Transl Med. 2012;4:120ra15.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Bennett J, Wellman J, Marshall KA, et al. Safety and durability of effect of contralateral-eye administration of AAV2 gene therapy in patients with childhood-onset blindness caused by RPE65 mutations: a follow-on phase 1 trial. Lancet. 2016;388:661–72.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Bainbridge JW, Mehat MS, Sundaram V, et al. Long-term effect of gene therapy on Leber’s congenital amaurosis. N Engl J Med. 2015;372:1887–97.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Cideciyan AV, Hauswirth WW, Aleman TS, et al. Human RPE65 gene therapy for Leber congenital amaurosis: persistence of early visual improvements and safety at 1 year. Hum Gene Ther. 2009;20:999–1004.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Georgiadis A, Duran Y, Ribeiro J, et al. Development of an optimized AAV2/5 gene therapy vector for Leber congenital amaurosis owing to defects in RPE65. Gene Ther. 2016;23:857–62.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Chacón-Camacho ÓF, Astorga-Carballo A, Zenteno JC. Gene therapy for hereditary ophthalmological diseases: advances and future perspectives. [Article in Spanish]. Gac Med Mex. 2015;151:501–11.Google Scholar

Copyright information

© Dr. K C Chaudhuri Foundation 2017

Authors and Affiliations

  • Brijesh Takkar
    • 1
  • Pooja Bansal
    • 1
  • Pradeep Venkatesh
    • 1
  1. 1.Retina and Uvea Services, Dr R P Centre for Ophthalmic SciencesAll India Institute of Medical SciencesNew DelhiIndia

Personalised recommendations