Skip to main content

Advertisement

Log in

Ultrasonography: Applications in Pediatric Abdomen

  • Review Article
  • Published:
The Indian Journal of Pediatrics Aims and scope Submit manuscript

Abstract

Ultrasonography (US) is a valuable imaging tool for evaluation of different clinical conditions in children, in general and abdominal conditions, in particular. The interest in US derives primarily from the lack of ionizing radiation exposure, low cost, portability, real-time imaging and Doppler capabilities. In addition, US application requires no preparation or sedation, making it particularly attractive in the pediatric population. Because of these advantages, US has been adopted as the primary imaging tool for evaluation of a number of pediatric abdominal conditions that would have involved the use of ionising radiation in the past, e.g., pyloric stenosis, intussusception and various renal and bladder abnormalities, to name a few. Certain limitations, however, are inherent to US including large body habitus, excessive bowel gas, postoperative state and the learning curve. In addition, pediatric US is particularly challenging as the children are frequently unable to co-operate for breath holding and many of them are crying during the scanning. In the present review, the authors discuss the various applications of US in the evaluation of pediatric abdomen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Mittal V, Saxena AK, Sodhi KS, et al. Role of abdominal sonography in pre-operative diagnosis of extrahepatic biliary atresia in infants younger than 90 days. AJR Am J Roentgenol. 2011;196:w438–45.

    Article  PubMed  Google Scholar 

  2. Miyano T, Yamataka A. Choledochal cysts. Curr Opin Pediatr. 1997;9:283–8.

    Article  CAS  PubMed  Google Scholar 

  3. Wesdorp I, Bosman D, Graaff A, et al. Clinical presentation and predisposing factors of cholelithiasis and sludge in children. J Pediatr Gastroenterol Nutr. 2000;31:411–7.

    Article  CAS  PubMed  Google Scholar 

  4. Yasuda H, Takada T, Kawarada Y, et al. Unusual causes of acute cholecystitis and cholangitis: Tokyo guidelines. J Hepatobiliary Pancreat Surg. 2007;14:98–113.

  5. Chavhan GB, Roberts E, Moineddin R, et al. Primary sclerosing cholangitis in children: utility of magnetic resonance cholangiopancreatography. Pediatr Radiol. 2008;38:868–73.

    Article  PubMed  Google Scholar 

  6. Zhu JA, Hu B. Ultrasonography in predicting and screening liver cirrhosis in children: a preliminary study. World J Gastroenterol. 2003;9:2348–9.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Goyal N, Jain N, Rachapalli V, et al. Non-invasive evaluation of liver cirrhosis using ultrasound. Clin Radiol. 2009;64:1056–66.

    Article  CAS  PubMed  Google Scholar 

  8. Chaubal N, Dighe M, Hanchate V, et al. Sonography in budd-chiari syndrome. J Ultrasound Med. 2006;25:373–9.

    PubMed  Google Scholar 

  9. Paltiel HJ, Patriquin HB, Keller MS, Babcock DS, Leithiser RE Jr. Infantile hepatic hemangioma: Doppler US. Radiology. 1992;182:735–42.

  10. Chung EM, Cube R, Lewis RB, Conran RM. Pediatric liver masses: radiologic-pathologic correlation. I Benign tumors. RadioGraphics. 2010;30:801–26.

    Article  PubMed  Google Scholar 

  11. Dachman AH, Pakter RL, Ros PR, Fishman EK, Goodman ZD, Lichtenstein JE. Hepatoblastoma: radiologic-pathologic correlation in 50 cases. Radiology. 1987;164:15–9.

    Article  CAS  PubMed  Google Scholar 

  12. Chung EM, Cube R, Lewis RB, Conran RM. Pediatric liver masses: radiologic-pathologic correlation. II Malignant tumors. RadioGraphics. 2011;31:483–507.

    Article  PubMed  Google Scholar 

  13. Mortele KJ, Segatto E, Ros PR. The infected liver: radiologic pathologic correlation. RadioGraphics. 2004;24:937–55.

    Article  PubMed  Google Scholar 

  14. Sodhi KS, Sidhu R, Gualti M, Saxena A, Suri S, Chawla Y. Role of tissue harmonic imaging in focal liver lesions: comparison with conventional sonography. J Gastroenterol Hepatol. 2005;20:1488–93.

    Article  PubMed  Google Scholar 

  15. Andrews MW. Ultrasound of the spleen. World J Surg. 2000;24:183–7.

    Article  CAS  PubMed  Google Scholar 

  16. La Seta F, Patti R, Sciarrino E, et al. Ultrasound, spleen and portal hypertension. Radiol Med. 2004;107:332–43.

    PubMed  Google Scholar 

  17. Miele V, Galluzzo M, Cortese A, Bellussi A, Valenti M. Diagnostic imaging of splenic cysts in children. Radiol Med. 1998;95:62–5.

    CAS  PubMed  Google Scholar 

  18. Orr LA, Powell RW, Melhem RE. Sonographic demonstration of annular pancreas in the newborn. J Ultrasound Med. 1992;11:373–5.

    CAS  PubMed  Google Scholar 

  19. Kaste SC. The pancreas (chapter 120). In: Slovis TL, editor. Caffey’s Pediatric diagnostic imaging. 11th edn. Section VI: the abdomen, pelvis and retroperitoneum. Part VI: the pancreas. Amsterdam: Mosby Elsevier; 2008.

    Google Scholar 

  20. Darge K, Anupindi S. Pancreatitis and the role of US, MRCP and ERCP. Pediatr Radiol. 2009;39:S153–7.

    Article  PubMed  Google Scholar 

  21. Chao HC, Lin SJ, Kong MS, et al. Sonographic evaluation of the pancreatic duct in normal children and children with pancreatitis. J Ultrasound Med. 2000;19:757–63.

    CAS  PubMed  Google Scholar 

  22. Hernanz-Schulman M Infantile hypertrophic pyloric stenosis. Radiology. 2003;227:319–31.

    Article  PubMed  Google Scholar 

  23. Neal MR, Seibert JJ, Vanderzalm T, Wagner CW. Neonatal ultrasonography to distinguish between meconium ileus and ileal atresia. J Ultrasound Med. 1997;16:263–6.

    CAS  PubMed  Google Scholar 

  24. Gupta AK, Guglani B. Imaging of congenital anomalies of the gastrointestinal tract. Indian J Pediatr. 2005;72:403–14.

    Article  PubMed  Google Scholar 

  25. Faingold R, Daneman A, Tomlinson G, et al. Necrotizing enterocolitis: assessment of bowel viability with color Doppler US. Radiology. 2005;235:587–94.

    Article  PubMed  Google Scholar 

  26. Sodhi KS, Bhatia A, Saxena AK, Rao KL, Menon P, Khandelwal N. Anticlockwise swirl of mesenteric vessels: a normal CT appearance, retrospective analysis of 200 pediatric patients. Eur J Radiol. 2014;83:710–4.

    Article  PubMed  Google Scholar 

  27. Hur J, Yoon CS, Kim MJ, Kim OH. Imaging features of gastrointestinal tract duplications in infants and children: from oesophagus to rectum. Pediatr Radiol. 2007;37:691–9.

    Article  PubMed  Google Scholar 

  28. Doria AS, Moineddin R, Kellenberger CJ, et al. US or CT for diagnosis of appendicitis in children and adults? A meta-analysis. Radiology. 2006;241:83–94.

    Article  PubMed  Google Scholar 

  29. Verschelden P, Filiatrault D, Garel L, et al. Intussusception in children: reliability of US in diagnosis-a prospective study. Radiology. 1992;184:741–4.

    Article  CAS  PubMed  Google Scholar 

  30. Oppenheimer DA, Carroll BA, Shochat SJ. Sonography of imperforate anus. Radiology. 1983;148:127–8.

    Article  CAS  PubMed  Google Scholar 

  31. Jones NM, Humphreys MS, Goodman TR, Sulivan PB, Grant HW. The value of anal endosonography compared with magnetic resonance imaging following the repair of anorectal malformations. Pediatr Radiol. 2003;33:183–5.

    Article  PubMed  Google Scholar 

  32. Mallik M, Watson AR. Antenatally detected urinary tract abnormalities: more detection but less action. Pediatr Nephrol. 2008;23:897–904.

    Article  PubMed  Google Scholar 

  33. Gupta P, Gupta AK, Aggarwala S. Urinary ascites secondary to bladder perforation in a neonate with posterior urethral valves. Oman Med J. 2013;28:42–3.

    Article  Google Scholar 

  34. Gupta P, Goel S, Sharma S. Crossed fused ectopia with multicystic renal dysplasia. Br J Urol Int. 2012. doi:10.1002/BJUIw-2011-100-web.

    Google Scholar 

  35. Julian JC, Merguerian PA, Shortliffe LMD. Pediatric genitourinary tumors. Curr Opin Oncol. 1995;7:265–74.

    Article  CAS  PubMed  Google Scholar 

  36. Donnelly LF. Fundamentals of pediatric radiology. Philadelphia: W. B. Saunders Company; 2001. p. 163–5.

    Google Scholar 

  37. Gupta P, Bhalla AS, Sharma R. Bilateral adrenal lesions. J Med Imaging Radiat Oncol. 2012;56:636–45.

    Article  PubMed  Google Scholar 

  38. Daneman A, Baunin C, Lobo E, et al. Disappearing suprarenal masses in fetuses and infants. Pediatr Radiol. 1997;27:675–81.

    Article  CAS  PubMed  Google Scholar 

  39. Avni EF, Rypens F, Smet MH, Galetty E. Sonographic demonstration of congenital adrenal hyperplasia in the neonate: the cerebriform pattern. Pediatr Radiol. 1993;23:88–90.

    Article  CAS  PubMed  Google Scholar 

  40. Paltiel H Pediatric abdominal applications of color Doppler ultrasonography. Ultrasound Q. 2002;18:161–85.

    Article  PubMed  Google Scholar 

  41. Faruque AV, Qazi SH, Khan MA, Akhtar W, Majeed A. Focused abdominal sonography for trauma (FAST) in blunt paediatric abdominal trauma. J Pak Med Assoc. 2013;63:361–4.

    PubMed  Google Scholar 

  42. Scaife ER, Rollins MD, Barnhart DC, et al. The role of focussed abdominal sonography for trauma (FAST) in pediatric trauma evaluation. J Pediatr Surg. 2013;48:1377–83.

  43. Menaker J, Blumberg S, Wisner DH, et al; Intra-abdominal Injury Study Group of the Pediatric Emergency Care Applied Research Network (PECARN). Use of the focused assessment with sonography for trauma (FAST) examination and its impact on abdominal computed tomography use in hemodynamically stable children with blunt torso trauma. J Trauma Acute Care Surg. 2014;77:427–32.

  44. McCarville MB. Contrast enhanced sonography in pediatrics. Pediatr Radiol. 2011;41:S238–42.

    Article  PubMed  Google Scholar 

  45. Engelmann G, Gebhardt C, Wenning D, et al. Feasibility study and control values of transient elastography in healthy children. Eur J Pediatr. 2012;171:353–60.

    Article  PubMed  Google Scholar 

  46. Goldschmidt I, Brauch C, Poynard T, Baumann U. Spleen stiffness by transient elastography to diagnose portal hypertension in children. J Pediatr Gastroenterol Nutr. 2014;59:197–203.

    Article  PubMed  Google Scholar 

  47. Menten R, Leonard A, Clapuyt P, Vincke P, Nicolae AC, Lebecque P. Transient elastography in patients with cystic fibrosis. Pediatr Radiol. 2010;40:1231–5.

    Article  PubMed  Google Scholar 

  48. Massironi S, Rossi RE, Fraquelli M, et al. Transient elastography in patients with celiac disease: a non-invasive method to detect liver involvement associated with celiac disease. Scand J Gastroenterol. 2012;47:640–8.

    Article  PubMed  Google Scholar 

  49. Leschied JR, Dilman JR, Bilhartz J, Heider A, Smith EA, Lopez MJ. Shear wave elastography helps differentiate biliary atresia from other neonatal/infantile liver diseases. Pediatr Radiol. 2015;45:366–75.

    Article  PubMed  Google Scholar 

  50. Sohn B, Kim M, Han SW, Im YJ, Lee M. Shear wave velocity measurements using acoustic radiation force impulse in young children with normal kidneys versus hydronephrotic kidneys. Ultrasonography. 2014;33:116–21.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Contributions

AKS: Manuscript editing, revision and final approval; PG: Wrote the manuscript and literature review; KSS: Manuscript editing and revision. AKS will act as guarantor for the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akshay Kumar Saxena.

Ethics declarations

Conflict of Interest

None.

Source of Funding

None.

Electronic supplementary material

Figure S1

Cholelithiasis. Transverse US image of the distended gallbladder shows a echogenic focus (arrow) with posterior acoustic shadowing (JPEG 48 kb)

Figure S2

Budd Chiari syndrome. Gray scale and Doppler US image of the hepatic veins shows echogenic lumen of the middle hepatic vein (arrow) with lack of color flow on color Doppler evaluation. Right hepatic vein shows normal color flow (JPEG 45 kb)

Figure S3

Pyogenic liver abscess. Transverse US image of the liver shows a well-defined cystic lesion with internal echogenic contents (arrow) and septations (short arrow) (JPEG 31 kb)

Figure S4

Splenomegaly. US image shows an enlarged heterogenous spleen in a case of lymphoma (JPEG 43 kb)

Figure S5

Focal splenic lesions. US image shows multiple hypoechoic lesions (arrows) in an enlarged spleen (JPEG 53 kb)

Figure S6

Pancreatitis. US image shows a bulky homogeneous pancreas (cursors) (JPEG 28 kb)

Figure S7

Meconium peritonitis (calcification). US image shows meconium pseudocyst (arrow). Image on the left shows dilated bowel loop with a focus of calcification (arrow) (JPEG 36 kb)

Figure S8

Duplication cysts. Axial US image of the upper abdomen shows a well-defined cystic lesion with multi-layered appearance of the wall in the upper abdomen (arrow) (JPEG 16 kb)

Figure S9

Appendicitis. Longitudinal and transverse US images of the right iliac fossa show a dilated tubular structure with thick wall (cursors) (JPEG 33 kb)

Figure S10

Ureteropelvic junction obstruction. Transverse US image of the right kidney shows markedly dilated renal pelvis (arrow) (JPEG 39 kb)

Figure S11

Perinephric urinoma. Longitudinal US images in a boy with posterior urethral valves show perinephric collection (cursors). The mildly hydronephrotic left kidney is displaced (arrows) (JPEG 43 kb)

Figure S12

Autosomal recessive polycystic kidney disease. Abdominal x-ray shows increased density in both flanks with displacement of bowel loops in the centre (A). Transverse US image shows bilateral smooth enlargement of kidneys with increase in echogenicity (B, arrows). High resolution ultrasound (7.5 MHz) shows linear radially arranged anechoic channels with intervening areas of raised echogenicity involving both cortex and medulla, suggestive of collecting duct ectasia with fibrosis (C). Liver showed raised periportal echogenicity (D, arrow) (JPEG 128 kb)

Figure S13

Autosomal dominant polycystic kidney disease (ADPKD). Longitudinal US image in a 5-y-old boy with family history of ADPKD shows a single cyst (arrow) in the upper pole of right kidney (JPEG 36 kb)

Figure S14

Adrenal hyperplasia. US image shows an enlarged left suprarenal gland (arrow). Left kidney is marked with short arrow (JPEG 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saxena, A.K., Gupta, P. & Sodhi, K.S. Ultrasonography: Applications in Pediatric Abdomen. Indian J Pediatr 83, 553–564 (2016). https://doi.org/10.1007/s12098-015-1968-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12098-015-1968-z

Keywords

Navigation