Skip to main content

Advertisement

Log in

Flow Cytometry in Hematological Disorders

  • Symposium on Pediatric Oncology: Hemato-Oncology
  • Published:
The Indian Journal of Pediatrics Aims and scope Submit manuscript

Abstract

Flow cytometry with its rapidly increasing applications is being used essentially in all fields of diagnostic medicine. In hematological disorders it is most commonly used in diagnosis, characterization, prognostication and even selecting target therapy of acute leukemia and to some extent lymphomas. It is increasingly finding place in other fields of hematology i.e., non-malignant disorders of all blood cell types including RBCs and platelets along with leukocytes. In this review the authors have discussed some of these applications with an emphasis on disorders specific to pediatric patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shapiro HM. Practical Flow Cytometry. 4th ed. New York: Wiley Liss; 2003.

    Book  Google Scholar 

  2. Michelson AD, Benoit SE, Furman MI, Bernard MR, Nurden P, Nurden AT. The platelet surface expression of glycoprotein V is regulated by two independent mechanisms: Proteolysis and a reversible cytoskeletal-mediated redistribution to the surface-connected canalicular system. Blood. 1996;87:1396–408.

    Google Scholar 

  3. Goodall AH, Appleby J. Flow-cytometric analysis of platelet-membrane glycoprotein expression and platelet activation. Methods Mol Biol. 2004;272:229–53.

    Google Scholar 

  4. Béné MC, Nebe T, Bettelheim P, Buldini B, Bumbea H, Kern W, et al. Immunophenotyping of acute leukemia and lymphoproliferative disorders: A consensus proposal of the European Leukemia Net Work Package 10. Leukemia. 2011;25:567–74.

    Article  PubMed  Google Scholar 

  5. Gujral S, Subramanian PG, Patkar N, Badrinath Y, Kumar A, Tembhare P, et al. Report of proceedings of the national meeting on “Guidelines for Immunophenotyping of Hematolymphoid Neoplasms by Flow Cytometry”. Indian J Pathol Microbiol. 2008;51:161–6.

    Article  PubMed  Google Scholar 

  6. Swerdlow S, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, et al. WHO Classification of Tumors of Hematopoietic and Lymphoid Tissues. Lyon: International agency for Research on Cancer (IARC); 2008.

    Google Scholar 

  7. Raspadori D, Damiani D, Lenoci M, Rondelli D, Testoni N, Nardi G, et al. CD56 antigenic expression in acute myeloid leukemia identifies patients with poor clinical prognosis. Leukemia. 2001;15:1161–4.

    Article  PubMed  CAS  Google Scholar 

  8. Raspadori D, Lauria F, Ventura MA, Rondelli D, Visani G, de Vivo A, et al. Incidence and prognostic relevance of CD34 expression in acute myeloblastic leukemia: Analysis of 141 cases. Leuk Res. 1997;21:603–7.

    Google Scholar 

  9. Lin P, Hao S, Medeiros J, Estey EH, Pierce SA, Wang X, et al. Expression of CD2 in acute promyelocytic leukemia correlates with short form of PML-RARα transcripts and poorer prognosis. Am J Clin Pathol. 2004;121:402–7.

    Article  PubMed  CAS  Google Scholar 

  10. Montesinos P, Rayón C, Vellenga E, Brunet S, González J, González M, et al. Clinical significance of CD56 expression in patients with acute promyelocytic leukemia treated with all-trans retinoic acid and anthracycline-based regimens. Blood. 2011;117:1799–805.

    Article  PubMed  CAS  Google Scholar 

  11. Campana D. Minimal residual disease analysis in acute lymphoblastic leukemia. Semin Hematol. 2009;46:100–6.

    Article  PubMed  Google Scholar 

  12. Salzburg J, Burkhardt B, Zimmermann M, Wachowski O, Woessmann W, Oschlies I, et al. Prevalence, clinical patterns, and outcome of CNS involvement in childhood and adolescent non Hodgkin’s lymphoma differ by non hodgkin’s lymphoma subtype: a Berlin-Frankfurt-Munster group report. J Clin Oncol. 2007;25:3915–22.

    Article  PubMed  Google Scholar 

  13. Meda BA, Buss DH, Woodruff RD, Cappellari JO, Rainer RO, Powell BL, et al. Diagnosis and subclassification of primary and recurrent lymphoma. The usefulness and limitations of combined fine-needle aspiration cytomorphology and flow cytometry. Am J Clin Pathol. 2000;113:688–99.

    Article  PubMed  CAS  Google Scholar 

  14. Demurtas A, Accinelli G, Pacchioni D, Godio L, Novero D, Bussolati G, et al. Utility of flow cytometry immunophenotyping in fine needle aspirate cytologic diagnosis of non hodgkin’s lymphoma: A series of 252 cases and review of the literature. Appl Immunohistochem Mol Morphol. 2010;18:311–22. doi:10.1097/PAI.0b013e3181827da8.

    Article  PubMed  Google Scholar 

  15. Barrena S, Almeida J, Del Carmen García-Macias M, López A, Rasillo A, Sayaques JM, et al. Flow cytometry immunophenotyping of fine-needle aspiration specimens: Utility in the diagnosis and classification of non-Hodgkin’s lymphoma. Histopathology. 2011;58:906–18. doi:10.1111/j.1365-2559.2011.03804.x.

    Google Scholar 

  16. Siena S, Bregni M, Di Nicola M, Peccatori F, Magni M, Brando B, et al. Milan Protocol for clinical CD 34+ cell estimation in peripheral blood for autografting in patients with cancer. In: Wunder E, Solvalat H, Henon PR, eds. Hematopoietic Stem Cells: The Millhouse Manual. Dayton: Alphamed; 1994. pp. 23–30.

  17. Sutherland DR, Keating A, Nayar R, Anania S, Stewart AK. Sensitive detection and enumeration of CD34+ cells in peripheral and cord blood by flow cytometry. Exp Hematol. 1994;22:1003–10.

    PubMed  CAS  Google Scholar 

  18. Sutherland DR, Anderson L, Keeney M, Nayar R, Chin-Yee I. The ISHAGE guidelines for CD34 + cell determination by flow cytometry. International Society of Hematotherapy and Graft Engineering. J Hematother. 1996;5:213–26.

    Article  PubMed  CAS  Google Scholar 

  19. Reckzeh B, Grebe SO, Rhiele I, Neubauer A, Müller TF. Monitoring of ATG therapy by flow cytometry: Comparison of one single-platform and two different dual platform methods. Transplant Proc. 2001;33:2234–6.

    Google Scholar 

  20. Gorrie M, Thomson G, Lewis DM, Boyce M, Riad HN, Beaman M, et al. Dose titration during anti-thymocyte globulin therapy: Monitoring by CD3 count or total lymphocyte count? Clin Lab Haematol. 1997;19:53–6.

    Google Scholar 

  21. Clark KR, Forsythe JL, Shenton BK, Lennard TW, Proud G, Taylor RM. Administration of ATG according to the absolute T lymphocyte count during therapy for steroid resistant rejection. Transpl Int. 1993;6:18–21.

    Article  PubMed  CAS  Google Scholar 

  22. Hernandez-Trujillo VP, Fleisher TA. Interpretation of flow cytometry in primary immunodeficiency disorders. Ann Allergy Asthma Immunol. 2008;100:612–5.

    Article  PubMed  Google Scholar 

  23. King MJ, Behrens J, Rogers C, Flyn C, Greenwood D, Chambers K. Rapid flow cytometric test for the diagnosis of membrane cytoskeleton associated hemolytic anaemia. Br J Haematol. 2000;111:924–33.

    PubMed  CAS  Google Scholar 

  24. Kar R, Mishra P, Pati HP. Evaluation of eosin 5 maleimide flow cytometric test in diagnosis of hereditary spherocytosis. Int J Lab Hematol. 2010;32:8–16.

    Article  PubMed  CAS  Google Scholar 

  25. Won DI, Suh JS. Flow cytometric detection of erythrocyte osmotic fragility. Cytometry B Clin Cytom. 2009;76:135–41.

    PubMed  Google Scholar 

  26. Shah SS, Diakiite SAS, Traorek K, Diakite M, Kwiatkowski DP, Rockett KA, et al. A novel cytofluorometric assay for the detection and quantification of glucose 6 phosphate dehydrogenase deficiency. Sci Rep. 2012;2:299.

    Article  PubMed  Google Scholar 

  27. Roys JL, Warzynski MJ. Estimation of “F-cell” populations. Cytometry B Clin Cytom. 2005;67:27–30.

    PubMed  Google Scholar 

  28. Italia KY, Colah R, Mohanty D. Evaluation of F cells in sickle cell disorders by flow cytometry-comparison with the Kleihauer-Betke’s slide method. Int J Lab Hematol. 2007;29:409–14.

    Article  PubMed  CAS  Google Scholar 

  29. Borowitz MJ, Craig FE, Digiuseppe JA, Illingworth AJ, Rosse W, Sutherland DR, et al; Clinical Cytometry Society. Guidelines for the diagnosis and monitoring of paroxysmal nocturnal hemoglobinuria and related disorders by flow cytometry. Cytometry B Clin Cytom. 2010;78:211–30.

    PubMed  Google Scholar 

  30. Harrison P, Mackie I, Mumford A, Briggs C, Liesner R, Winter M, et al. British Committee for Standards in Hematology. Guidelines for the laboratory investigation of heritable disorders of platelet function. Br J Haematol. 2011;155:30–44.

    Article  PubMed  CAS  Google Scholar 

  31. George JN, Caen J-P, Nurden AT. Glanzmann’s thrombasthenia: The spectrum of clinical disease. Blood. 1990;75:1383–95.

    Google Scholar 

  32. Nurden AT, George JN. Inherited abnormalities of the platelet membrane: glanzmann thrombasthenia, Bernard-Soulier syndrome, and other disorders. In: Colman RW, Marder VJ, Clowes AW, George JN, Goldhaber SZ, eds. Hemostasis and Thrombosis, Basic Principles and Clinical Practice. 6th ed. Philadelphia: Lippincott, Williams & Wilkins; 2005.

  33. Savoia A, Pastore A, De Rocco D, Civaschi E, Di Stazio M, Bottega R, et al. Clinical and genetic aspects of Bernard-Soulier syndrome: Searching for genotype/phenotype correlations. Haematologica. 2011;96:417–23.

    Google Scholar 

  34. Gordon N, Thom J, Cole C, Baker R. Rapid detection of hereditary and acquired storage pool deficiency by flow cytometry. Br J Haematol. 1995;89:117–23.

    Article  PubMed  CAS  Google Scholar 

  35. Wall JE, Buijs-Wilts M, Arnold JT, Wang W, White MM, Jennings LK, et al. A flow cytometric assay using mepacrine for study of uptake and release of platelet dense granule contents. Br J Haematol. 1995;89:380–5.

    Article  PubMed  CAS  Google Scholar 

  36. Kroft SH. Role of flow cytometry in pediatric hematopathology. Am J Clin Pathol. 2004;122:S19–32.

    PubMed  Google Scholar 

  37. McKenna RW, Washington LT, Aquino DB, Picker LJ, Kroft SH. Immunophenotypic analysis of hematogones (B-lymphocyte precursors) in 662 consecutive bone marrow specimens by 4-color flow cytometry. Blood. 2001;98:2498–507.

    Article  PubMed  CAS  Google Scholar 

  38. Strauss SE, Sneller M, Lenardo MJ, Puck JM, Strober W, et al. An inherited disorder of lymphocyte apoptosis: The autoimmune lymphoproliferative syndrome. Ann Intern Med. 1999;130:591–661.

    Google Scholar 

  39. Bleesing JJ, Brown MR, Strauss SE, Dale JK, Siegel RM, Johnson M, et al. Immunophenotypic profiles in families with autoimmune lymphoproliferative syndrome. Blood. 2001;98:2466–73.

    Article  PubMed  CAS  Google Scholar 

  40. Kogawa K, Lee SM, Villanueva J, Marmer D, Sumegi J, Filipovich AH. Perforin expression in cytotoxic lymphocytes from patients with hemophagocytic lymphohistiocytosis and their family members. Blood. 2002;99:61–6.

    Article  PubMed  CAS  Google Scholar 

  41. Arcio M, Allen M, Brusa S, Clementi R, Pende D, Maccario R, et al. Hemophagocytic lymphohistiocytosis: Proposal of adiagnostic algorithm based on perforin expression. Br J Haematol. 2002;119:180–8.

    Google Scholar 

Download references

Conflict of Interest

None.

Role of Funding Source

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hara Prasad Pati.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pati, H.P., Jain, S. Flow Cytometry in Hematological Disorders. Indian J Pediatr 80, 772–778 (2013). https://doi.org/10.1007/s12098-013-1152-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12098-013-1152-2

Keywords

Navigation