Skip to main content

Advertisement

Log in

Point of Care Investigations in Pediatric Care to Improve Health Care in Rural Areas

  • Special Article
  • Published:
The Indian Journal of Pediatrics Aims and scope Submit manuscript

Abstract

The good quality laboratory services in developing countries are often limited to major urban centers. As a result, many commercially available high-quality diagnostic tests for infectious diseases are neither accessible nor affordable to patients in the rural areas. Health facilities in rural areas are compromised and this limits the usability and performance of the best medical diagnostic technologies in rural areas as they are designed for air-conditioned laboratories, refrigerated storage of chemicals, a constant supply of calibrators and reagents, stable electrical power, highly trained personnel and rapid transportation of samples. The advent of new technologies have allowed miniaturization and integration of complex functions, which has made it possible for sophisticated diagnostic tools to move out of the developed-world laboratory in the form of a “point of care”(POC) tests. Many diagnostic tests are being developed using these platforms. However, the challenge is to develop diagnostics which are inexpensive, rugged and well suited to the medical and social contexts of the developing world and do not compromise on accuracy and reliability. The already available POC tests which are reliable and affordable, like for HIV infection, malaria, syphilis, and some neglected tropical diseases, and POC tests being developed for other diseases if correctly used and effectively regulated after rigorous evaluation, have the potential to make a difference in clinical management and improve surveillance. In order to use these tests effectively they would need to be supported by technically competent manpower, availability of good-quality reagents, and healthcare providers who value and are able to interpret laboratory results to guide treatment; and a system for timely communication between the laboratory and the healthcare provider. Strengthening the laboratories at the rural level can enable utilization of these diagnostics for improving the diagnosis and management of infectious diseases among children which require prompt treatment and thus, considerably reduce morbidity and mortality among the pediatric age group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bryce J, Boschi-Pinto C, Shibuya K, Black RE. WHO estimates of the causes of death in children. Lancet. 2005;365:1147–52.

    Article  PubMed  Google Scholar 

  2. Epsicom Business Intelligence. The Global Market for Point of Care Diagnostics: Major Players and Key Issues, Vol 1. Publication No. ISBN: 978 1 85822 306 3. Epsicom Business Intelligence, 2007.

  3. Peeling RW, Mabey D. Point of care tests for diagnosing infections in developing world. Clin Microbiol Infect. 2010;16:1062–9.

    Article  PubMed  CAS  Google Scholar 

  4. Sample Registration System (SRS) Office of Registrar General, India 7th July 2011.

  5. Morris SK, Bassani DG, Awasthi S, et al. Diarrhea, pneumonia, and infectious disease mortality in children aged 5 to 14 years in India. PLoS One. 2011;6:e20119.

    Article  PubMed  CAS  Google Scholar 

  6. Jordan JA, Durso MB. Comparison of 16S rRNA gene PCR and BACTEC 9240 for detection of neonatal bacteremia. J Clin Microbiol. 2000;38:2574–8.

    PubMed  CAS  Google Scholar 

  7. Menon PK. Polymerase chain reaction in rapid diagnosis of neonatal sepsis. Indian Pediatr. 2005;42:681–5.

    PubMed  Google Scholar 

  8. Laforgia N, Coppola B, Carbone R, Grassi A, Mautone A, Iolascon A. Rapid detection of neonatal sepsis using polymerase chain reaction. Acta Paediatr. 1997;86:1097–9.

    Article  PubMed  CAS  Google Scholar 

  9. Shang S, Chen G, Wu Y, Du L, Zhao Z. Rapid diagnosis of bacterial sepsis with PCR amplification and microarray hybridization in 16S rRNA gene. Pediatr Res. 2005;58:143–8.

    Article  PubMed  CAS  Google Scholar 

  10. Jordan JA, Jones-Laughner J, Durso MB. Utility of pyrosequencing in identifying bacteria directly from positive blood culture bottles. J Clin Microbiol. 2009;47:368–72.

    Article  PubMed  CAS  Google Scholar 

  11. Jordan JA, Durso MB, Butchko AR, Jones JG, Brozanski BS. Evaluating the near-term infant for early onset sepsis: Progress and challenges to consider with 16S rDNA polymerase chain reaction testing. J Mol Diagn. 2006;8:357–63.

    Article  PubMed  CAS  Google Scholar 

  12. Das NG, Baruah I, Kamal S, Sarkar PK, Das SC, Santhanam K. An epidemiological and entomological investigation on malaria outbreak at Tamulpur PHC, Assam. Indian J Malariol. 1997;34:164–70.

    PubMed  CAS  Google Scholar 

  13. Prakash A, Mohapatra PK, Bhattacharyya DR, Doloi P, Mahanta J. Changing malaria endemicity–a village based study in Sonitpur, Assam. J Com Dis. 1997;29:175–8.

    CAS  Google Scholar 

  14. Dutta P, Khan AM, Mahanta J. Problem of malaria in relation to socio-cultural diversity in some ethnic communities of Assam and Arunachal Pradesh. J Parasitic Dis. 1999;23:101–4.

    Google Scholar 

  15. Shukla RP, Pandey AC, Mathur A. Investigations of malaria outbreak in Rajasthan. Indian J Malariol. 1995;32:119–28.

    PubMed  CAS  Google Scholar 

  16. Murray CK, Gasser RA Jr, Magill AJ, Miller RS. Update on rapid diagnostic testing for malaria. Clin Microbiol Rev. 2008;21:97–110.

    Article  PubMed  Google Scholar 

  17. Marx A, Pewsner D, Egger M, et al. Meta-analysis: Accuracy of rapid tests for malaria in travelers returning from endemic areas. Ann Intern Med. 2005;142:836–46.

    Article  PubMed  Google Scholar 

  18. Stauffer WM, Cartwright CP, Olson DA. Diagnostic performance of rapid diagnostic tests versus blood smears for malaria in US clinical practice. Clin Infect Dis. 2009;49:908–13.

    Article  PubMed  Google Scholar 

  19. Wiseman V, Kim M, Mutabingwa TK, Whitty CJM. Cost-effectiveness study of three antimalarial drug combinations in Tanzania. PLoS Med. 2006;3:e373.

    Article  PubMed  Google Scholar 

  20. Rafael ME, Taylor T, Magill A, Lim YW, Girosi F, Allan R. Reducing the burden of childhood malaria in Africa: The role of improved diagnostics. Nature. 2006;444:39–48.

    Article  PubMed  Google Scholar 

  21. Black RE, Cousens S, Johnson HL, et al; Global, regional, and national causes of child mortality in 2008: A systematic analysis. Lancet. 2010;375:1969–87.

    Article  PubMed  Google Scholar 

  22. World Health Organization. Guidelines on the Integrated Management of Childhood Illness. Geneva: WHO; 2004.

    Google Scholar 

  23. Cutts FT, Zaman SM, Enwere G, et al; Gambian Pneumococcal Vaccine Trial Group. Efficacy of nine-valent pneumococcal conjugate vaccine against pneumonia and invasive pneumococcal disease in The Gambia: Randomised, double-blind, placebo-controlled trial. Lancet. 2005;365:1139–46.

    Article  PubMed  CAS  Google Scholar 

  24. Lee WM, Grindle K, Pappas T, et al. High-throughput, sensitive, and accurate multiplex PCR-microsphere flow cytometry system for large-scale comprehensive detection of respiratory viruses. J Clin Microbiol. 2007;45:2626–34.

    Article  PubMed  CAS  Google Scholar 

  25. Caliendo AM. Multiplex PCR, and emerging technologies for the detection of respiratory pathogens. Clin Infect Dis. 2011;52:S326–30.

    Article  PubMed  Google Scholar 

  26. Coiras MT, Aguilar JC, Garcia ML, Casas I, Perez-Brena P. Simultaneous detection of fourteen respiratory viruses in clinical specimens by two multiplex reverse transcription nested-PCR assays. J Med Virol. 2004;72:484–95.

    Article  PubMed  CAS  Google Scholar 

  27. Syrmis MW, Whiley DM, Thomas M, et al. A sensitive, specific, and cost-effective multiplex reverse transcriptase-PCR assay for the detection of seven common respiratory viruses in respiratory samples. J Mol Diagn. 2004;6:125–31.

    Article  PubMed  CAS  Google Scholar 

  28. Mahony J, Chong S, Merante F, et al. Development of a respiratory virus panel test for detection of twenty human respiratory viruses by use of multiplex PCR and a fluid microbead-based assay. J Clin Microbiol. 2007;45:2965–70.

    Article  PubMed  CAS  Google Scholar 

  29. Murdoch DR, Laing RT, Mills GD, et al. Evaluation of a rapid immunochromatographic test for detection of Streptococcus pneumoniae antigen in urine samples from adults with community-acquired pneumonia. J Clin Microbiol. 2001;39:3495–8.

    Article  PubMed  CAS  Google Scholar 

  30. Leeming JP, Cartwright K, Morris R, Martin SA, Smith MD; South-West Pneumococcus Study Group. Diagnosis of invasive pneumococcal infection by serotype-specific urinary antigen detection. J Clin Microbiol. 2005;43:4972–6.

    Article  PubMed  CAS  Google Scholar 

  31. van der Meer V, Neven AK, van den Broek PJ, Assendelft WJ. Diagnostic value of C reactive protein in infections of the lower respiratory tract: Systematic review. BMJ. 2005;331:26.

    Article  PubMed  Google Scholar 

  32. Scott JA, Brooks WA, Peiris JS, Holtzman D, Mulholland EK. Pneumonia research to reduce childhood mortality in the developing world. J Clin Invest. 2008;118:1291–300.

    Article  PubMed  CAS  Google Scholar 

  33. National Commission on Macroeconomics and Health (NCMH). Disease burden in India: Estimations and causal analysis. National Commission on Macroeconomics and Health.

  34. Cruz AT, Starke JR. Clinical manifestations of tuberculosis in children. Pediatr Respir Rev. 2007;8:107–17.

    Article  Google Scholar 

  35. Eamranond P, Jaramillo E. Tuberculosis in children: Reassessing the need for improved diagnosis in global control strategies. Int J Tuberc Lung Dis. 2001;5:594–603.

    PubMed  CAS  Google Scholar 

  36. Swaminathan S, Datta M, Radhamani MP, et al. A profile of bacteriologically confirmed pulmonary tuberculosis in children. Indian Pediatr. 2008;45:743–7.

    PubMed  Google Scholar 

  37. Marais BJ, Pai M. Recent advances in the diagnosis of childhood tuberculosis. Arch Dis Child. 2007;92:446–52.

    Article  PubMed  Google Scholar 

  38. Marais BJ, Pai M. New approaches and emerging technologies in the diagnosis of childhood tuberculosis. Paediatr Respir Rev. 2007;8:124–33.

    Article  PubMed  Google Scholar 

  39. Guillerm M, Usdin M, Arkinstall J. Tuberculosis diagnosis and drug sensitivity testing: An overview of the current diagnostic pipeline. Geneva: Me’decins Sans Frontie’res, 2006. http://www.accessmedmsf.org/documents/Diagnostics%20Pipeline%20Report.pdf. Accessed on June 2009.

  40. Lalvani A, Millington KA. T cell-based diagnosis of childhood tuberculosis infection. Curr Opin Infect Dis. 2007;20:264–71.

    Article  PubMed  Google Scholar 

  41. Bianchi L, Galli L, Moriondo M, et al. Interferon-gamma release assay improves the diagnosis of tuberculosis in children. Pediatr Infect Dis J. 2009;28:510–4.

    Article  PubMed  Google Scholar 

  42. Minion J, Leung E, Talbot E, Dheda K, Pai M, Menzies D. Diagnosing tuberculosis with urine lipoarabinomannan: Systematic review and meta-analysis. Eur Respir J. 2011; published online June 23. doi:10.1183/09031936.00025711.

  43. Sivagnanam G, Thirumalaikolundusubramanian P, Mohanasundaram J, Raaj AA, Namasivayam K, Rajaram S. A survey on current attitude of practicing physicians upon usage of antimicrobial agents in southern part of India. Med Gen Med. 2004;6:1.

    CAS  Google Scholar 

  44. Linder JA, Bates DW, Lee GM, Finkelstein JA. Antibiotic treatment of children with sore throat. JAMA. 2005;294:2315–22.

    Article  PubMed  CAS  Google Scholar 

  45. Dellinger RP, Levy MM, Carlet JM, et al. Surviving Sepsis Campaign: International guidelines for management of severe sepsis and shock. Crit Care Med. 2008;36:296–327.

    Article  PubMed  Google Scholar 

  46. Smolina I, Miller NS, Frank-Kamenetskii MD. PNA-based microbial pathogen identification and resistance marker detection: An accurate, isothermal rapid assay based on genome-specific features. Artif DNA PNA XNA. 2010;1:76–82.

    Article  PubMed  Google Scholar 

  47. Panizzi P, Nahrendorf M, Figueiredo JL, et al. In vivo detection of Staphylococcus aureus endocarditis by targeting pathogen-specific prothrombin activation. Nat Med. 2011;17:1142–6.

    Article  PubMed  CAS  Google Scholar 

  48. Petti CA, Polage CR, Quinn TC, Ronald AR, Sande MA. Laboratory medicine in Africa: A barrier to effective health care. Clin Infect Dis. 2006;42:377–82.

    Article  PubMed  Google Scholar 

  49. Ministry of Health and Family Welfare, Government of India. NRHM: Meeting people’s health needs in partnership with states, the journey so far, 2005-10. New Delhi: MoHFW, GOI; 2010.

    Google Scholar 

  50. World Health Organization. Regulation of in vitro diagnostics: A global perspective. Diagnostics for Tuberculosis: Global Demand and Market Potential. Geneva: TDR/FIND SA; 2006. pp. 194–203.

    Google Scholar 

  51. Peeling RW, Smith PG, Bossuyt PM. A guide for diagnostic evaluations. Nat Rev Microbiol. 2006;4:S2–6.

    Article  Google Scholar 

  52. Reyburn H, Mbakilwa H, Mwangi R, et al. Rapid diagnostic tests compared with malaria microscopy for guiding outpatient treatment of febrile illness in Tanzania: Randomised trial. BMJ. 2007;334:403.

    Article  PubMed  Google Scholar 

  53. Bell D, Wongsrichanalai C, Barnwell JW. Ensuring quality and access for malaria diagnosis: How can it be achieved? Nat Rev Microbiol. 2006;4:S7–20.

    Article  PubMed  Google Scholar 

  54. Jan Swasthya Sahayog. Impressions from a rural laboratory. MFC Bull. 2006;316, 317:1–4.

  55. Mabey D, Peeling RW, Ustianowski A, Perkins M. Diagnostics for the developing world. Nat Rev Microbiol. 2004;2:231–40.

    Article  PubMed  CAS  Google Scholar 

  56. World Health Organization. Guidelines for the Treatment of Malaria. Geneva: WHO; 2006.

    Google Scholar 

  57. Determining Cost Effectiveness of Malaria Rapid Diagnostic Tests in Rural Areas with High Prevalence. www.wpro.who.int/sites/rdt

  58. Global Health Innovation Quotient Prize: Point of Care Diagnostics for Differential Diagnosis of Fever in Children, BIO Ventures for Global Health 2011. www.bvgh.org

Download references

Conflict of Interest

None.

Role of Funding Source

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamini Walia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walia, K. Point of Care Investigations in Pediatric Care to Improve Health Care in Rural Areas. Indian J Pediatr 80, 576–584 (2013). https://doi.org/10.1007/s12098-013-1016-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12098-013-1016-9

Keywords

Navigation