Skip to main content

Consensus on Timing of Intervention for Common Congenital Heart Diseases: Part I - Acyanotic Heart Defects

Abstract

The purpose of this review/editorial is to discuss how and when to treat the most common acyanotic congenital heart defects (CHD); the discussion of cyanotic heart defects will be presented in a subsequent editorial. By and large, the indications and timing of intervention are decided by the severity of the lesion. Balloon pulmonary valvuloplasty is the treatment of choice for valvar pulmonary stenosis and the indication for intervention is peak-to-peak systolic pressure gradient >50 mmHg across the pulmonary valve. For aortic valve stenosis, balloon aortic valvuloplasty appears to be the first therapeutic procedure of choice; the indications for balloon dilatation of aortic valve are peak-to-peak systolic pressure gradient across the aortic valve in excess of 70 mmHg irrespective of the symptoms or a gradient ≥50 mmHg with either symptoms or electrocardiographic ST-T wave changes indicative of myocardial perfusion abnormality. The indications for intervention in coarctation of the aorta are significant hypertension and/or congestive heart failure along with a pressure gradient in excess of 20 mmHg across the coarctation; the type of intervention varies with age at presentation and the anatomy of coarctation: surgical intervention for neonates and young infants, balloon angioplasty for discrete native coarctation in children, and stents in adolescents and adults. Long segment coarctations or those associated with hypoplasia of the isthmus or transverse aortic arch require surgical treatment in younger children and stents in adolescents and adults. For post-surgical aortic recoarctation, balloon angioplasty in young children and stents in adolescents and adults are treatment options. Transcatheter closure methods are currently preferred for ostium secundum atrial septal defects (ASDs); the indications for occlusion are right ventricular volume overload by echocardiogram. Ostium primum, sinus venosus and coronary sinus ASDs require surgical closure. For all ASDs elective closure around age 4 to 5 y is recommended or as and when detected beyond that age. For the more common perimembraneous ventricular septal defects (VSDs) of large size, surgical closure should be performed prior to 6 to 12 mo of age. Muscular VSDs may be closed with devices. Patent ductus arteriosus (PDA) may be closed with Amplatzer Duct Occluder if they are moderate to large and Gianturco coils if they are small. Surgical and video-thoracoscopic closure are the available options at some centers. In the presence of pulmonary hypertension appropriate testing to determine suitability for closure should be undertaken. The treatment of acyanotic CHD with currently available medical, transcatheter and surgical methods is feasible, safe and effective and should be performed at an appropriate age in order to prevent damage to cardiovascular structures.

This is a preview of subscription content, access via your institution.

References

  1. Rao PS. Preface. In Rao, PS. ed. Congenital Heart Disease - Selected Aspects. InTech, ISBN 978-953-307-472-6, Rijeka, Croatia, 2011: pp IX-XIII.

  2. Rao PS. Diagnosis and management of acyanotic heart disease: part I - obstructive lesions. Indian J Pediatr. 2005;72:496–502.

    Google Scholar 

  3. Rao PS. Percutaneous balloon pulmonary valvuloplasty: state of the art. Cath Cardiovasc Intervent. 2007;69:747–63.

    Article  Google Scholar 

  4. Rao PS. Pulmonary valve stenosis. In: Sievert H, Qureshi SA, Wilson N, Hijazi Z, eds. Percutaneous interventions in congenital heart disease. Oxford: Informa Health Care; 2007. pp. 185–95.

    Google Scholar 

  5. Rao PS. Indications for balloon pulmonary valvuloplasty. Am Heart J. 1988;116:1661–2.

    PubMed  CAS  Article  Google Scholar 

  6. Singh GK, Balfour IC, Chen S, et al. Lesion specific pressure recovery phenomenon in pediatric patients: a simultaneous Doppler and catheter correlative study. J Am Coll Cardiol. 2003;41:493A.

    Article  Google Scholar 

  7. Jureidini SB, Rao PS. Critical pulmonary stenosis in the neonate: role of transcatheter management. J Invasive Cardiol. 1996;8:326–31.

    PubMed  Google Scholar 

  8. Rao PS. Role of interventional cardiology in neonates: part II - Balloon angioplasty/valvuloplasty. Congenital Cardiol Today. 2008;6:1–14.

    Google Scholar 

  9. Rao PS. Balloon aortic valvuloplasty: a review. Clin Cardiol. 1990;13:458–66.

    PubMed  CAS  Article  Google Scholar 

  10. Rao PS. Balloon aortic valvuloplasty. J Intervent Cardiol. 1998;11:319–29.

    Article  Google Scholar 

  11. Rao PS. Long-term follow-up results after balloon dilatation of pulmonic stenosis, aortic stenosis and coarctation of the aorta; a review. Progr Cardiovasc Dis. 1999;42:59–74.

    CAS  Article  Google Scholar 

  12. Lababidi Z, Weinhaus L. Successful balloon valvuloplasty for neonatal critical aortic stenosis. Am Heart J. 1986;112:913–6.

    PubMed  CAS  Article  Google Scholar 

  13. Beekman RH, Rocchini AP, Andes A. Balloon valvuloplasty for critical aortic stenosis in the newborn, influence of new catheter technology. J Am Coll Cardiol. 1991;17:1172–6.

    PubMed  CAS  Article  Google Scholar 

  14. Hausdorf G, Schneider M, Schrimer KR, Ingram S-N, Lange PE. Anterograde balloon valvuloplasty of aortic stenosis in children. Am J Cardiol. 1993;71:560–2.

    Article  Google Scholar 

  15. O’Laughlin MP, Slack MC, Grifka R, Mullins CE. Pro-grade double balloon dilatation of congenital aortic valve stenosis: a case report. Cathet Cardiovasc Diagn. 1993;28:134–6.

    PubMed  Article  Google Scholar 

  16. Rao PS, Jureidini SB. Transumbilical venous anterograde, snare-assisted balloon aortic valvuloplasty in a neonate with critical aortic stenosis. Cathet Cardiovasc Diagn. 1998;45:144–8.

    PubMed  CAS  Article  Google Scholar 

  17. Ross DN. Replacement of aortic and mitral valves with a pulmonary autograft. Lancet. 1967;2:956–8.

    PubMed  CAS  Article  Google Scholar 

  18. Stelzer P. The Ross procedure: state of the art 2011. Semin Thorac Cardiovasc Surg. 2011;23:115–23.

    PubMed  Article  Google Scholar 

  19. Rao PS, Seib PM. Coarctation of the Aorta. eMedicine from WebMD. Updated July 20, 2009. Available at: http://emedicine.medscape.com/article/895502-overview.

  20. Rao PS, Wilson AD, Brazy J. Transumbilical balloon coarctation angioplasty in a neonate with critical aortic coarctation. Am Heart J. 1992;124:1622–4.

    PubMed  CAS  Article  Google Scholar 

  21. Salahuddin N, Wilson AD, Rao PS. An unusual presentation of coarctation of the aorta in infancy: role of balloon angioplasty in the critically ill infant. Am Heart J. 1991;122:1772–5.

    PubMed  CAS  Article  Google Scholar 

  22. Rao PS. Should balloon angioplasty be used as a treatment of choice for native aortic coarctations? J Invasive Cardiol. 1996;8:301–8.

    PubMed  Google Scholar 

  23. Rao PS. Balloon angioplasty for native aortic coarctation in neonates and infants. Cardiol Today. 2005;9:94–9.

    Google Scholar 

  24. Liberthson RR, Pennington DG, Jacobs ML, Daggett WM. Coarctation of the aorta: review of 234 patients and clarification of management problems. Am J Cardiol. 1979;43:835–40.

    PubMed  CAS  Article  Google Scholar 

  25. Seiraf PA, Warner KG, Geggel RL, Payne DD, Cleveland RJ. Repair of coarctation of the aorta during infancy minimizes the risk of late hypertension. Ann Thorac Surg. 1998;66:1378–82.

    Article  Google Scholar 

  26. Pinzon JL, Burrows PE, Benson LN, et al. Repair of coarctation of the aorta in children: postoperative morphology. Radiology. 1991;180:199–203.

    PubMed  CAS  Google Scholar 

  27. Rao PS. Balloon angioplasty for aortic recoarctation following previous surgery. In: Rao PS, ed. Transcatheter therapy in pediatric cardiology. New York: Wiley-Liss; 1993. pp. 197–212.

    Google Scholar 

  28. Rao PS, Wilson AD, Chopra PS. Immediate and follow-up results of balloon angioplasty of postoperative recoarctation in infants and children. Am Heart J. 1990;120:1315–20.

    PubMed  CAS  Article  Google Scholar 

  29. Siblini G, Rao PS, Nouri S, Ferdman B, Jureidini SB, Wilson AD. Long-term follow-up results of balloon angioplasty of postoperative aortic recoarctation. Am J Cardiol. 1998;81:61–7.

    PubMed  CAS  Article  Google Scholar 

  30. Rao PS, Chopra PS. Role of balloon angioplasty in the treatment of aortic coarctation. Ann Thorac Surg. 1991;52:621–31.

    PubMed  CAS  Article  Google Scholar 

  31. Rao PS, Galal O, Smith PA, Wilson AD. Five-to-nine-year follow-up results of balloon angioplasty of native aortic coarctation in infants and children. J Am Coll Cardiol. 1996;27:462–70.

    PubMed  CAS  Article  Google Scholar 

  32. Rao PS. When and how should atrial septal defects be closed in adults. J Invasive Cardiol. 2009;21:76–82.

    PubMed  Google Scholar 

  33. Holzer R, Cao QL, Hijazi ZM. Closure of a moderately large atrial septal defect with a self-fabricated fenestrated Amplatzer septal occluder in an 85-year-old patient with reduced diastolic elasticity of the left ventricle. Catheter Cardiovasc Interv. 2005;64:513–8.

    PubMed  Article  Google Scholar 

  34. Kretschmar O, Sglimbea A, Corti R, Knirsch W. Shunt reduction with a fenestrated Amplatzer device. Catheter Cardiovasc Interv. 2010;76:564–71.

    PubMed  Article  Google Scholar 

  35. Di Bernardo S, Fasnacht M, Berger F. Transcatheter closure of a coronary sinus defect with an Amplatzer septal occluder. Catheter Cardiovasc Interv. 2003;60:287–90.

    PubMed  Article  Google Scholar 

  36. Hagen PT, Scholz DG, Edwards WD. Incidence and size of patent foramen ovale during the first 10 decades of life: an autopsy study of 965 normal hearts. Mayo Clin Proc. 1984;59:17–20.

    PubMed  CAS  Article  Google Scholar 

  37. Rao PS, Chandar JS, Sideris EB. Role of inverted buttoned device in transcatheter occlusion of atrial septal defect or patent foramen ovale with right-to-left shunting associated with previously operated complex congenital cardiac anomalies. Am J Cardiol. 1997;80:914–21.

    PubMed  CAS  Article  Google Scholar 

  38. Lechat P, Mas JL, Lascault G, et al. Prevalence of patent foramen ovale in patients with stroke. N Engl J Med. 1988;318:1148–52.

    PubMed  CAS  Article  Google Scholar 

  39. Webster MW, Chancellor AM, Smith HJ, et al. Patent foramen ovale in young stroke patients. Lancet. 1988;2:11–2.

    PubMed  CAS  Article  Google Scholar 

  40. Ende DJ, Chopra PS, Rao PS. Transcatheter closure of atrial septal defect or patent foramen ovale with the buttoned device for prevention of recurrence of paradoxic embolism. Am J Cardiol. 1996;78:233–6.

    PubMed  CAS  Article  Google Scholar 

  41. Waight DJ, Cao QL, Hijazi ZM. Closure of patent foramen ovale in patients with orthodeoxia-platypnea using the Amplatzer devices. Catheter Cardiovasc Interv. 2000;50:195–8.

    PubMed  CAS  Article  Google Scholar 

  42. Rao PS, Palacios IF, Bach RG, et al. Platypnea-orthodeoxia syndrome: management by transcatheter buttoned device implantation. Cathet Cardiovasc Intervent. 2001;54:77–82.

    CAS  Article  Google Scholar 

  43. Wilmshurst P, Walsh K, Morrison WL. Transcatheter occlusion of foramen ovale with a buttoned device after neurological decompression illness in professional divers. Lancet. 1996;348:752–3.

    PubMed  CAS  Article  Google Scholar 

  44. Wilmshurst P, Nightingale S, Walsh KP, Morrison WL. Effect on migraine of closure cardiac right-to-left shunts to prevent recurrence of decompression illness, stroke or for haemodynamic reasons. Lancet. 2000;356:1648–51.

    PubMed  CAS  Article  Google Scholar 

  45. Rao PS. Congenital heart defects – A review. In: Rao PS, ed. Congenital heart disease - selected aspects. Rijeka: InTech; 2011. pp. 3–44.

    Google Scholar 

  46. Thanopoulos BD, Tsaousis GS, Konstantopoulou GI, Zarayelyan AG. Transcatheter closure of muscular ventricular septal defects with the Amplatzer ventricular septal defect occluder: Initial clinical application in children. J Am Coll Cardiol. 1999;33:1395–9.

    PubMed  CAS  Article  Google Scholar 

  47. Amin Z, Cao QL, Hijazi ZM. Closure of muscular ventricular septal defects: transcatheter and hybrid techniques. Catheter Cardiovasc Interv. 2008;72:102–11.

    PubMed  Google Scholar 

  48. Fu YC, Bass J, Amin Z, et al. Transcatheter closure of perimembranous ventricular septal defects using the new Amplatzer membranous VSD occluder. Results of the U.S. Phase I trial. J Am Coll Cardiol. 2006;47:319–25.

    PubMed  Article  Google Scholar 

  49. Holzer R, de Giovanni J, Walsh KP, et al. Transcatheter closure of perimembranous ventricular septal defects using the Amplatzer membranous VSD occluder: immediate and midterm results of an international registry. Catheter Cardiovasc Intervent. 2006;68:620–8.

    Article  Google Scholar 

  50. Rao PS. Perimembranous ventricular septal defect closure with the Amplatzer device. (Editorial). J Invasive Cardiol. 2008;20:217–8.

    PubMed  Google Scholar 

  51. Viswanathan S, Kumar RK. Assessment of operability in congenital cardiac shunts with increased pulmonary vascular resistance. Cathet Cardiovasc Interv. 2008;71:665–70.

    Article  Google Scholar 

  52. Beghetti M. A classification system and treatment guidelines for PAH associated with congenital heart disease. Adv Pulm Hypertens. 2006;5:31–5.

    Google Scholar 

  53. Balzer DT, Kort HW, Day RW, et al. Inhaled nitric oxide as a preoperative test (INOP Test I): the INOP Test Study Group. Circulation. 2002;106:I76–81.

    PubMed  Google Scholar 

  54. Gross RE, Hubbard JP. Surgical ligation of patent ductus arteriosus: a report of first successful case. J Am Med Assoc. 1939;112:729–31.

    Article  Google Scholar 

  55. Rao PS. History of transcatheter patent ductus arteriosus closure devices. In: Rao PS, Kern MJ, eds. Catheter based devices for the treatment of noncoronary cardiovascular disease in adults and children. Philadelphia: Lippincott, Williams & Wilkins; 2003. pp. 145–53.

    Google Scholar 

  56. Rao PS. Percutaneous closure of patent ductus arteriosus — Current status. J Invasive Cardiol. 23:517-20.

  57. Grifka RG, Vincent JA, Nihill MR, Ing FF, Mullins CE. Transcatheter patent ductus arteriosus closure in an infant using Gianturco-Grifka device. Am J Cardiol. 1996;78:721–3.

    PubMed  CAS  Article  Google Scholar 

  58. Cambier PA, Kirby WC, Wortham DC, Moore JW. Percutaneous closure of small (<2.5 mm) patent ductus arteriosus using coil embolization. Am J Cardiol. 1992;69:815–6.

    PubMed  CAS  Article  Google Scholar 

  59. Masura J, Walsh KP, Thanopoulos B, et al. Catheter closure of moderate-to-large-sized patent ductus arteriosus using new Amplatzer duct occluder; immediate and short-term results. J Am Coll Cardiol. 1998;31:1878–82.

    Google Scholar 

  60. Rao PS. Coil occlusion of patent ductus arteriosus (Editorial). J Invasive Cardiol. 2001;13:36–8.

    PubMed  CAS  Google Scholar 

  61. Mavroudis C, Becker CL, Gewitz M. Forty-six years of patent ductus arteriosus division at Children’s Memorial hospital of Chicago: standards for comparison. Ann Surg. 1994;220:402–10.

    PubMed  CAS  Article  Google Scholar 

  62. Laborde F, Noihomme P, Karam J, Batisse A, Bourel P, Saint Maurice O. A new video-assisted thoracoscopic surgical technique for interruption of patent ductus arteriosus in infants and children. J Thorac Cardiovasc Surg. 1993;105:278–80.

    PubMed  CAS  Google Scholar 

  63. Bensky AS, Raines KH, Hines MH. Late follow-up after thoracoscopic ductal ligation. Am J Cardiol. 2000;86:360–1.

    PubMed  CAS  Article  Google Scholar 

  64. Rao PS. Transcatheter closure of moderate-to-large patent ductus arteriosus. J Invasive Cardiol. 2001;13:303–6.

    PubMed  CAS  Google Scholar 

  65. Hoyer MH. Novel use of the Amplatzer plug for closure of a patent ductus arteriosus. Cathet Cardiovasc Intervent. 2005;65:577–80.

    Article  Google Scholar 

  66. Tsounias E, Rao PS. Versatility of Amplatzer Vascular Plug in occlusion of different types of vascular channels. Cathet Cardiovasc Intervent. 2008;71:83.

    Google Scholar 

  67. Huston AB, Gnanaprakasam JD, Lim MK, Doig WB, Coleman EN. Doppler ultrasound and the silent ductus. Br Heart J. 1991;65:97–9.

    Article  Google Scholar 

  68. Saxena A. National consensus meeting on "Management of Congenital Heart Diseases in India" held on 26th august 2007 at the All India Institute of Medical Sciences, New Delhi, India, supported by The Cardiological Society of India. Indian Heart J. 2007;59:515–21.

    PubMed  Google Scholar 

  69. Working Group on Management of Congenital Heart Diseases in India. Consensus on timing of intervention for common congenital heart disease. Indian Pediatr. 2008;45:117–26.

    Google Scholar 

Download references

Acknowledgements

The author of this editorial and the editors of this Journal thank Dr. Bharat Dalvi of Glenmark Cardiac Centre, Matunga (E), Mumbai, India; Dr. Vikas Kohli of Indraprastha Apollo Hospital and Delhi Child Heart Center, New Delhi, India; Dr. R. Krishna Kumar of Amrita Institute of Medical Sciences and Research Center, Kochi, Kerala, India and Dr. I.B. Vijayalakshmi of Sri Jayadeva Institute of Cardiovascular Sciences and Research, Bangalore, India for their review and constructive criticism of this paper.

Conflict of Interest

None.

Role of Funding Source

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Syamasundar Rao.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rao, P.S. Consensus on Timing of Intervention for Common Congenital Heart Diseases: Part I - Acyanotic Heart Defects. Indian J Pediatr 80, 32–38 (2013). https://doi.org/10.1007/s12098-012-0833-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12098-012-0833-6

Keywords

  • Congenital heart defects
  • Pulmonary stenosis
  • Aortic stenosis
  • Coarctation of the aorta
  • Atrial septal defect
  • Ventricular septal defect
  • Patent ductus arteriosus
  • Indications for intervention
  • Transcatheter therapy