Skip to main content

Advertisement

Log in

Is cirrhosis of the liver reversible?

  • Symposium: Gastroenterology & Hepatology
  • Published:
The Indian Journal of Pediatrics Aims and scope Submit manuscript

Abstract

Extensive and persistent hepatic fibrosis has for a long time been considered irreversible. Accumulating evidence suggests that liver fibrosis is reversible and that recovery from cirrhosis may be possible. The application of molecular techniques to models of reversible fibrosis are helping to establish the events and processes that are critical to recovery. The problem consists in identifying and eliminating its cause. Although fibrosis in the liver has little functional significance by itself, its severity derives from associated vascular changes. Disappearance of fibrosis can be accompanied by remodeling of vascular changes. However, depending on its duration, the fibrosis may be irreversible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benyon RC, Arthur MJ. Mechanisms of hepatic fibrosis. J Pediatr Gastroenterol Nutr 1998; 27: 75–85.

    Article  PubMed  CAS  Google Scholar 

  2. Rojkind M, Giambrone M-A, Biempica L. Collagen types in normal and cirrhotic liver. Gastroenterology 1979; 76: 710–719.

    PubMed  CAS  Google Scholar 

  3. Seyer JM, Huherson ET, Kang AH. Collagen polymorphism in normal and cirrhotic human liver. J Clin Invest 1977; 59: 241–248.

    PubMed  CAS  Google Scholar 

  4. McGuire RF, Bissell DM, Boyles J, Roll FJ. Role of extracellular matrix in regulating fenestrations of sinusoidal endothelial cells isolated from normal rat liver. Hepatology 1992; 15: 989–997.

    Article  PubMed  CAS  Google Scholar 

  5. Friedman SL. Molecular regulation of hepatic fibrosis, an integrated cellular response to tissue injury. J Biol Chem 2000; 275: 2247–2250.

    Article  PubMed  CAS  Google Scholar 

  6. Whalen R, Rockey DC, Friedman SL, Boyer TD. Activation of rat hepatic stellate cells leads to loss of glutathione S-transferases and their enzymatic activity against products of oxidative stress. Hepatology 1999; 30: 927–933.

    Article  PubMed  CAS  Google Scholar 

  7. Rockey DC. Hepatic blood flow regulation by stellate cells in normal and injured liver. Semin Liver Dis 2001; 21: 337–350.

    Article  PubMed  CAS  Google Scholar 

  8. Benyon D, Arthur MJP. Extracellular matrix degradation and the role of stellate cells. Semin Liver Dis 2001; 21: 373–384.

    Article  PubMed  CAS  Google Scholar 

  9. Friedmann SL, Bansal MB. Reversal of Hepatic Fibrosis — Fact or Fantasy? HEPATOLOGY 2006; 43: S82–S88.

    Article  CAS  Google Scholar 

  10. Perez-Tamayo R. Degradation of collagen: pathology. In: Weiss JB, Jayson MIV, eds. Collagen in Health and Disease. London; Churchill Livingstone, 1982; 135–159.

    Google Scholar 

  11. Katz N, Brener Z. Evolução clínica de 112 casos de esquistossomose mansoni observados após dez anos de permanência em focos endêmicos de Minas Gerais. Revista do Instituto de Medicina Tropic de São Paulo 1966; 8: 139–142.

    CAS  Google Scholar 

  12. Bina JC, Prata A. Regressão da hepatoesplenomegalia pelo tratamento específico da esquistossomose. Revista da Sociedade Brasileira de Medicina Tropical 1983; 16: 213–218.

    Google Scholar 

  13. Homeida MA, Ahmed S, Dafalla A, Sulliman S, Eltom I, Nash T, Bennett JL. Morbidity associated with Schistosoma mansoni infection as determined by ultrasound: a study in Gezira, Sudan. Amer J Tropic Med and Hygiene 1988; 39: 196–201.

    CAS  Google Scholar 

  14. Mohamed-Ali Q, Doehring-Schwerdtfeger E, Abdel-Rahim IM, Schlake J, Kardoff R, Franke D, Kaiser C, Elsheikh M, Abdalla S, Schafer P, Ehrich JHH. Ultrasonographic investigation of periportal fibrosis in children with Schistosoma mansoni infection: reversibility of morbidity seven months after treatment with praziquantel. Amer J Tropic Med and Hygiene 1991; 44: 444–451.

    CAS  Google Scholar 

  15. Richter J. The impact of chemotherapy on morbidity due to Schistosomiasis. Acta Tropica 2003; 86: 161–183.

    Article  PubMed  Google Scholar 

  16. Dietze RS, Prata A. Rate of reversion of hepatosplenic schistosomiasis after specific chemotherapy. Revista da Sociedade Brasileira de Medicina Tropic 1986; 19: 69–73.

    CAS  Google Scholar 

  17. Andrade ZA, Peixoto E, Guerret S, Grimaud JA. Hepatic connective tissue changes in hepatosplenic schistosomiasis. Human Pathology 1992;23: 566–573.

    Article  PubMed  CAS  Google Scholar 

  18. Cameron CR, Ganguly NC. An experimental study of the pathogenesis and reversibility of schistosomal hepatic fibrosis. J Pathol and Bacteriol 1964; 87: 217–237.

    Article  CAS  Google Scholar 

  19. Warren KS. The influence of treatment on the development and course of murine hepatosplenic schistosomiasis mansoni. Transact Royal Society of Tropic Med and Hygiene 1962; 56: 510–519.

    Article  CAS  Google Scholar 

  20. Andrade ZA. Evolution and Involution of Hepatosplenic Schistosomiasis. Memórias do Instituto Oswaldo Cruz 1989; 84(suppl I): 58–75.

    PubMed  Google Scholar 

  21. Andrade ZA, Grimaud JA. Evolution of schistosomal hepatic lesions in mice after curative chemotherapy. Amer J Pathology 1986; 124: 59–65.

    CAS  Google Scholar 

  22. Ferreira LA, Andrade ZA. Capillaria hepatica: a cause of septal fibrosis of the liver. Memórias do Instituto Oswaldo Cruz 1993; 88: 441–447.

    PubMed  CAS  Google Scholar 

  23. Lemos QT, Magalhães Santos IF, Andrade ZA. Immunological basis of septal fibrosis of the liver in Capillaria hepatica-infected rats. Brazilian J Medic and Biology Research 2003; 36: 1201–1207.

    CAS  Google Scholar 

  24. Friedman SL. Mechanisms of hepatic fibrosis and therapeutic implications. Nature Clin Pract Gastroenterol Hepatol 2004; 1: 98–105.

    Article  Google Scholar 

  25. Arthur MJP. Matrix degradation in liver: A role in injury and repair. Hepatology 1997; 26: 1069–1071.

    Article  PubMed  CAS  Google Scholar 

  26. Okazaki I, Maruyama K. Collagenase activity in experimental hepatic fibrosis. Nature 1974; 252: 49–50.

    Article  PubMed  CAS  Google Scholar 

  27. Maruyama K, Feinman L, Fainsilber Z et al. Mammalian collagenase increases in early alcoholic liver disease and decreases with cirrhosis. Life Sci 1982; 30: 1379–1384.

    Article  PubMed  CAS  Google Scholar 

  28. Knittel T, Mehde M, Kobold D et al. Expression patterns of matrix metalloproteinases and their inhibitors in parenchymal and non-parenchymal cells of rat liver: regulation by TNF-alpha and TGF-beta1. J Hepatol 1999; 30: 48–60.

    Article  PubMed  CAS  Google Scholar 

  29. Lichtinghagen R, Breitenstein K, Arndt B et al. Comparison of matrix metalloproteinase expression in normal and cirrhotic human liver. Virchows Arch 1998; 432: 153–158.

    Article  PubMed  CAS  Google Scholar 

  30. Kossakowska AE, Edwards DR, Lee SS et al. Altered balance between matrix metalloproteinases and their inhibitors in experimental biliary fibrosis. Am J Pathol 1998; 153: 1895–1902.

    PubMed  CAS  Google Scholar 

  31. Matrisian LM. The matrix-degrading metalloproteinases. Bioessays 1992; 14: 455–463.

    Article  PubMed  CAS  Google Scholar 

  32. Knittel T, Fellmer P, Ramadori G. Gene expression and regulation of plasminogen activator inhibitor type I in hepatic stellate cells of rat liver. Gastroenterology 1996; 111: 745–754.

    Article  PubMed  CAS  Google Scholar 

  33. Ricard BS, Bresson HS, Guerret S et al. Mechanism of collagen network stabilization in human irreversible granulomatous liver fibrosis. Gastroenterology 1996; 111: 172–182.

    Article  Google Scholar 

  34. Vater CA, Harris-ED J, Siegel RC. Native cross-links in collagen fibrils induce resistance to human synovial collagenase. Biochem J 1979; 181: 639–645.

    PubMed  CAS  Google Scholar 

  35. Frisch SM, Francis H. Disruption of epithelial cell-matrix interactions induces apoptosis. J Cell Biol 1994; 124: 619–626.

    Article  PubMed  CAS  Google Scholar 

  36. Friedman SL, Roll FJ, Boyles J et al. Maintenance of differentiated phenotype of cultured rat hepatic lipocytes by basement membrane matrix. J Biol Chem 1989; 264: 10756–10762.

    PubMed  CAS  Google Scholar 

  37. Iimuro Y, Nishio T, Morimoto T, Nitta T, Stefanovic B, Choi SK et al. Delivery of matrix metalloproteinase-1 attenuates established liver fibrosis in the rat. Gastroenterology 2003; 124: 445–458.

    Article  PubMed  CAS  Google Scholar 

  38. Dufour JF, DeLellis R, Kaplan MM. Regression of hepatic fibrosis in hepatitis C with long-term interferon treatment. Dig Dis Sci 1998; 43: 2573–2576.

    Article  PubMed  CAS  Google Scholar 

  39. Dufour JF, DeLellis R, Kaplan MM. Reversibility of hepatic fibrosis in autoimmune hepatitis. Ann Intern Med 1997; 127: 981–985.

    PubMed  CAS  Google Scholar 

  40. Arthur MJP. Reversibility of liver fibrosis and cirrhosis following treatment for hepatitis C (Editorial). Gastroenterology 2002; 122: 1525–1528.

    Article  PubMed  Google Scholar 

  41. Villeneuve JP, Condreay LD, Willems B, Pomier-Layrargues G, Fenyves D, Bilodeau M, Leduc R et al. Lamivudine treatment for decompensated cirrhosis resulting from chronic hepatitis B. HEPATOLOGY 2000; 31: 207–210.

    Article  PubMed  CAS  Google Scholar 

  42. Popper H. Pathologic aspects of cirrhosis. A Review. Amer J Pathology 1977; 87: 227–264.

    Google Scholar 

  43. Desmet VJ, Roskams T. Cirrhosis reversal: a duel between dogma and myth. J Hepatology 2004;40: 860–867.

    Article  Google Scholar 

  44. Friedman SL. Liver Fibrosis — From bench to bedside. J Hepatology 2003;38: 38–53.

    Article  Google Scholar 

  45. Iredale JP, Benyon RC, Pickering J, McCullen M, Northrop M, Pawley S, Hovell C, Arthur MJP. Mechanisms of spontaneous resolution of rat liver fibrosis: hepatic stellate cell apoptosis and reduced hepatic expression of metalloproteinase inhibitors. J Clinic Investigation 1998; 102: 538–549.

    Article  CAS  Google Scholar 

  46. Wanless IR, Nakashima E, Sherman M. Regression of human cirrhosis. Morphologic features and the genesis of incomplete septal cirrhosis. Arch Pathology and Lab Med 2000; 124: 1599–1607.

    CAS  Google Scholar 

  47. Quinn OS, Higginson J. Reversible and irreversible changes in experimental cirrhosis. Ameri J Pathology 1965; 47: 353–369.

    CAS  Google Scholar 

  48. Iwamoto H, Sakai H, Tada S et al. Induction of apoptosis in rat hepatic stellate cells by disruption of integrin-mediated cell adhesion. J Lab Clin Med 1999; 134: 83–89.

    Article  PubMed  CAS  Google Scholar 

  49. Di Vinicius I, Baptista AP, Barbosa Jr AA, Andrade ZA. Morphological signs of cirrhosis regression. (Experimental observations on carbon-tetrachloride-induced liver cirrhosis in rats). Pathol, Research and Practice 2005; 201(6): 449–456.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Sarin M.D., D.M. FNA, FNASc.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, M., Sarin, S.K. Is cirrhosis of the liver reversible?. Indian J Pediatr 74, 393–399 (2007). https://doi.org/10.1007/s12098-007-0067-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12098-007-0067-1

Key words

Navigation