The c-differential behavior of the inverse function under the EA-equivalence

Abstract

While the classical differential uniformity (c = 1) is invariant under the CCZ-equivalence, the newly defined (Ellingsen et al., IEEE Trans. Inf. Theory 66(9), 5781–5789, 2020) concept of c-differential uniformity (cDU), as was observed in Hasan et al. (2020), is not invariant under EA or CCZ-equivalence, for c≠ 1. In this paper, we find an intriguing behavior of the inverse function, namely, that adding some appropriate linearized monomials increases the c-differential uniformity significantly, for some c. For example, adding the linearized monomial \(x^{2^{d}}\) to \(x^{2^{n}-2}\), where d is the largest nontrivial divisor of n, increases the mentioned c-differential uniformity from 2 or 3 (for c≠ 0,1) to ≥ 2d + 2, which in the case of the inverse function (as used in the AES) on \({\mathbb {F}}_{2^{8}}\) is a significant value of 18. We consider the case of perturbations via more general linearized polynomials and give bounds for the cDU based upon character sums. We further provide some computational results on other known Sboxes.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Bartoli, D., Calderini, M.: On construction and (non)existence of c-(almost) perfect nonlinear functions. arXiv:2008.03953 (2020)

  2. 2.

    Bartoli, D., Timpanella, M.: On a generalization of planar functions. J. Algebr. Comb. 52, 187–213 (2020)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Berlekamp, E. R., Rumsey, H., Solomon, G.: On the solutions of algebraic equations over finite fields. Inf. Control. 10, 553–564 (1967)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Bluher, A. W.: On xq+ 1+ax+b. Finite Fields Appl. 10(3), 285–305 (2004)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Borisov, N., Chew, M., Johnson, R., Wagner, D.: Multiplicative differentials. In: Daemen, J., Rijmen, V (eds.) Fast Software Encryption, FSE 2002, LNCS 2365, pp 17–33. Springer, Berlin (2002)

  6. 6.

    Bourbaki, N.: Elements of Mathematics, Algebra II (translated by P. M. Cohn and J. Howie). Springer, Berlin (1990)

    Google Scholar 

  7. 7.

    Budaghyan, L.: Construction and Analysis of Cryptographic Functions. Springer, Berlin (2014)

    Google Scholar 

  8. 8.

    Carlet, C.: Boolean functions for cryptography and error correcting codes. In: Crama, Y., Hammer, P. (eds.) Boolean Methods and Models, pp. 257–397. Cambridge Univ. Press, Cambridge (2010)

  9. 9.

    Carlet, C.: Vectorial boolean functions for cryptography. In: Crama, Y., Hammer, P. (eds.) Boolean Methods and Models, pp 398–472. Cambridge Univ. Press, Cambridge (2010)

  10. 10.

    Cusick, T.W., Stănică, P.: Cryptographic Boolean Functions and Applications, 2nd edn. Academic Press, San Diego (2017)

    Google Scholar 

  11. 11.

    Daemen, J., Rijmen, V.: AES Proposal: Rijndael. https://csrc.nist.gov/CryptoToolkit/aes/rijndael/Rijndael.pdf

  12. 12.

    Ellingsen, P., Felke, P., Riera, C., Stănică, P., Tkachenko, A.: C-differentials, multiplicative uniformity and (almost) perfect c-nonlinearity. IEEE Trans. Inf. Theory 66(9), 5781–5789 (2020)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Hasan, S.U., Pal, M., Riera, C., Stănică, P.: On the c-differential uniformity of certain maps over finite fields. Des. Codes Cryptogr. https://doi.org/10.1007/s10623-020-00812-0 (2020)

  14. 14.

    Helleseth, T., Kholosha, A.: On the equation x2+ 1 + x + a = 0 over GF(2k). Finite Fields Appl. 14, 159–176 (2008)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Li, K., Qu, L., Sun, B., Li, C.: New results about the boomerang uniformity of permutation polynomials. IEEE Trans. Inf. Theory 65(11), 7542–7553 (2019)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Lidl, R., Niederreiter, H.: Finite Fields, 2nd edn., vol. 20. Cambridge Univ. Press, Cambridge (1997). Encycl. Math Appl.

    Google Scholar 

  17. 17.

    Mesnager, S.: Bent Functions: Fundamentals and Results. Springer, Berlin (2016)

    Google Scholar 

  18. 18.

    Mills, D.: On the evaluation of Weil Sums of Dembowski–Ostrom polynomials. J. Number Theory 92(1), 87–98 (2002)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Mesnager, S., Riera, C., Stănică, P., Zhou, Z., Yan, H.: Investigations on c-(almost) perfect nonlinear functions manuscript (2020)

  20. 20.

    Stănică, P.: Investigations on c-boomerang uniformity and perfect nonlinearity. arXiv:2004.11859 (2020)

  21. 21.

    Stănică, P.: Using double Weil sums in finding the Boomerang and the c-Boomerang Connectivity Table for monomial functions on finite fields. arXiv:2007.09553 (2020)

  22. 22.

    Tokareva, N.: Bent Functions, Results and Applications to Cryptography. Academic Press, San Diego (2015)

    Google Scholar 

  23. 23.

    Zha, Z., Hu, L.: Some classes of power functions with low c-differential uniformity over finite fields. https://arxiv.org/pdf/2008.12183v1.pdf

Download references

Acknowledgments

The authors would like to express their sincere appreciation for the reviewers’ careful reading, beneficial comments and suggestions, and to the editors for the prompt handling of our paper.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Pantelimon Stănică.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Stănică, P., Geary, A. The c-differential behavior of the inverse function under the EA-equivalence. Cryptogr. Commun. (2021). https://doi.org/10.1007/s12095-020-00466-8

Download citation

Keywords

  • Boolean and p-ary functions
  • c-differentials
  • Differential uniformity
  • Perfect and almost perfect c-nonlinearity
  • Perturbations
  • Characters

Mathematics Subject Classification (2010)

  • 06E30
  • 11T06
  • 94A60
  • 94C10