Skip to main content
Log in

On a class of permutation trinomials in characteristic 2

  • Published:
Cryptography and Communications Aims and scope Submit manuscript

Abstract

Recently, Tu, Zeng, Li, and Helleseth considered trinomials of the form \(f(X)=X+aX^{q(q-1)+ 1}+bX^{2(q-1)+ 1}\in \mathbb {F}_{q^{2}}[X]\), where q is even and \(a,b\in \mathbb {F}_{q^{2}}^{*}\). They found sufficient conditions on a, b for f to be a permutation polynomial (PP) of \(\mathbb {F}_{q^{2}}\) and they conjectured that the sufficient conditions are also necessary. The conjecture has been confirmed by Bartoli using the Hasse-Weil bound. In this paper, we give an alternative solution to the question. We also use the Hasse-Weil bound, but in a different way. Moreover, the necessity and sufficiency of the conditions are proved by the same approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bartoli, D.: On a conjecture about a class of permutation trinomials. Finite Fields Appl. 52, 30–50 (2018)

    Article  MathSciNet  Google Scholar 

  2. Gupta, R., Sharma, R.K.: Some new classes of permutation trinomials over finite fields with even characteristic. Finite Fields Appl. 41, 89–96 (2016)

    Article  MathSciNet  Google Scholar 

  3. Hou, X.: A survey of permutation binomials and trinomials over finite fields. In: Proceedings of the 11th International Conference on Finite Fields and Their Applications, Magdeburg, Germany, 2013, Contemporary Mathematics, vol. 632, pp. 177–191 (2015)

  4. Hou, X.: Permutation polynomials over finite fields — a survey of recent advances. Finite Fields Appl. 32, 82–119 (2015)

    Article  MathSciNet  Google Scholar 

  5. Hou, X.: Determination of a type of permutation trinomials over finite fields, II. Finite Fields Appl. 35, 16–35 (2015)

    Article  MathSciNet  Google Scholar 

  6. Li, N., Helleseth, T.: Several classes of permutation trinomials from Niho exponents. Cryptogr. Commun. 9, 693–705 (2017)

    Article  MathSciNet  Google Scholar 

  7. Li, K., Qu, L., Chen, X.: New classes of permutation binomials and permutation trinomials over finite fields. Finite Fields Appl. 43, 69–85 (2017)

    Article  MathSciNet  Google Scholar 

  8. Park, Y.H., Lee, J.B.: Permutation polynomials and group permutation polynomials. Bull. Austral. Math. Soc. 63, 67–74 (2001)

    Article  MathSciNet  Google Scholar 

  9. Stichtenoth, H.: Algebraic Function Fields and Codes. Springer, Berlin (1993)

    MATH  Google Scholar 

  10. Tu, Z., Zeng, X., Li, C., Helleseth, T.: A class of new permutation trinomials. Finite Fields Appl. 50, 178–195 (2018)

    Article  MathSciNet  Google Scholar 

  11. Wang, Q.: Cyclotomic mapping permutation polynomials over finite fields. In: Golomb, S.W., Gong, G., Helleseth, T., Song, H.-Y. (eds.) Sequences, Subsequences, and Consequences, Lecture Notes in Comput. Sci., vol. 4893, pp 119–128. Springer, Berlin (2007)

    Google Scholar 

  12. Williams, K.S.: Note on cubics over GF(2n) and GF(3n). J. Number Theory 7, 361–365 (1975)

    Article  MathSciNet  Google Scholar 

  13. Wu, D., Yuan, P., Ding, C., Ma, Y.: Permutation trinomials over \(\mathbb {F}_{2^{m}}\). Finite Fields Appl. 46, 38–56 (2017)

    Article  MathSciNet  Google Scholar 

  14. Zha, Z., Hu, L., Fan, S.: Further results on permutation trinomials over finite fields with even characteristic. Finite Fields Appl. 45, 43–52 (2017)

    Article  MathSciNet  Google Scholar 

  15. Zieve, M.E.: On some permutation polynomials over \(\mathbb {F}_{q}\) of the form xrh(x(q− 1)/d). Proc. Amer. Math. Soc. 137, 2209–2216 (2009)

    Article  MathSciNet  Google Scholar 

  16. Zieve, M.E.: Permutation polynomials on \(\mathbb {F}_{q}\) induced from Rédei function bijections on subgroups of \(\mathbb {F}_{q}^{*}\). arXiv:1310.0776

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang-dong Hou.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Special Issue on Boolean Functions and Their Applications

Appendix

Appendix

In (3.15),

$$\begin{array}{@{}rcl@{}} F_{4}&=&a_{1}+b+b^{2}+a_{1} b^{2}+b^{3}+b^{4}+a_{1} b^{4}+b^{5}+b^{6}+a_{1} b^{6}+b^{7}+b^{8}\\ &&+({a_{1}^{3}} +{a_{1}^{2}} b+{a_{1}^{3}} b^{4} +{a_{1}^{2}} b^{5})k+({a_{1}^{4}}+{a_{1}^{5}}+{a_{1}^{4}} b+{a_{1}^{4}} b^{2}+{a_{1}^{5}} b^{2}+{a_{1}^{4}} b^{3})k^{2}\\ &&+({a_{1}^{7}} +{a_{1}^{6}} b)k^{3}+{a_{1}^{8}} k^{4}, \end{array} $$
(A1)
$$\begin{array}{@{}rcl@{}} F_{3}&=& 1+{a_{1}^{2}}+{a_{1}^{3}}+{a_{1}^{4}}+b+a_{1} b+{a_{1}^{4}} b+b^{2}+a_{1} b^{2}+{a_{1}^{3}} b^{2}+b^{3}+b^{4}+{a_{1}^{2}}b^{4}\\ &&+b^{5}+a_{1} b^{5}+b^{6}+a_{1} b^{6}+b^{7}+({a_{1}^{2}} +{a_{1}^{4}} +{a_{1}^{5}} +{a_{1}^{2}} b +{a_{1}^{4}} b^{2} +{a_{1}^{2}} b^{4}+{a_{1}^{2}}b^{5})k\\ &&+({a_{1}^{4}} +{a_{1}^{4}} b +{a_{1}^{5}} b +{a_{1}^{4}} b^{2} +{a_{1}^{5}} b^{2} +{a_{1}^{4}} b^{3})k^{2}+({a_{1}^{6}} +{a_{1}^{6}} b)k^{3}, \end{array} $$
(A2)
$$\begin{array}{@{}rcl@{}} F_{2}&=& b+a_{1} b+{a_{1}^{3}} b+{a_{1}^{4}} b+b^{2}+a_{1} b^{2}+{a_{1}^{3}} b^{2}+{a_{1}^{4}} b^{2}+b^{3}+{a_{1}^{2}} b^{3}+{a_{1}^{3}}b^{3}+b^{4}\\ &&+{a_{1}^{2}} b^{4}+{a_{1}^{3}} b^{4}+b^{5}+a_{1} b^{5}+{a_{1}^{2}} b^{5}+b^{6}+a_{1} b^{6}+{a_{1}^{2}} b^{6}+b^{7}+b^{8}\\ &&+({a_{1}^{3}} +{a_{1}^{4}} +{a_{1}^{3}}b +{a_{1}^{3}} b^{2} +{a_{1}^{5}} b^{2} +{a_{1}^{3}} b^{3} +{a_{1}^{4}} b^{3})k\\ &&+({a_{1}^{4}} +{a_{1}^{4}} b +{a_{1}^{4}} b^{2} +{a_{1}^{6}} b^{2}+{a_{1}^{4}} b^{3})k^{2}+{a_{1}^{7}} k^{3}+{a_{1}^{8}} k^{4}, \end{array} $$
(A3)
$$\begin{array}{@{}rcl@{}} F_{1}&=& a_{1}+{a_{1}^{2}}+{a_{1}^{3}}+{a_{1}^{4}}+b+a_{1} b+{a_{1}^{3}} b+{a_{1}^{4}} b+a_{1} b^{2}+{a_{1}^{2}} b^{2}+b^{3}\\ &&+{a_{1}^{2}} b^{3}+{a_{1}^{3}} b^{3}+a_{1} b^{4}+{a_{1}^{3}} b^{4}+b^{5}+a_{1} b^{5}+{a_{1}^{2}} b^{5}+a_{1} b^{6}+b^{7}\\ &&+(1+{a_{1}^{3}} +{a_{1}^{4}} +{a_{1}^{5}} +b +a_{1}b +{a_{1}^{3}} b +{a_{1}^{4}} b +b^{2} +a_{1} b^{2} +{a_{1}^{4}} b^{2}\\ &&+b^{3} +{a_{1}^{3}} b^{3} +{a_{1}^{4}} b^{3} +b^{4} +{a_{1}^{3}} b^{4} +b^{5} +a_{1} b^{5} +b^{6} +a_{1} b^{6} +b^{7})k\\ &&+({a_{1}^{2}} +{a_{1}^{4}} +{a_{1}^{2}} b +{a_{1}^{4}} b +{a_{1}^{4}} b^{2} +{a_{1}^{4}} b^{3} +{a_{1}^{2}} b^{4} +{a_{1}^{2}} b^{5})k^{2}\\ &&+({a_{1}^{4}} +{a_{1}^{6}} +{a_{1}^{4}} b +{a_{1}^{5}} b +{a_{1}^{4}} b^{2} +{a_{1}^{5}} b^{2} +{a_{1}^{4}} b^{3})k^{3}+({a_{1}^{6}} +{a_{1}^{6}} b)k^{4}, \end{array} $$
(A4)
$$\begin{array}{@{}rcl@{}} F_{0}&=& b+{a_{1}^{4}} b+b^{2}+{a_{1}^{4}} b^{2}+b^{5}+b^{6}+(a_{1} +{a_{1}^{2}} +{a_{1}^{3}} +{a_{1}^{4}} +b +a_{1}b +{a_{1}^{3}} b +{a_{1}^{4}} b\\ &&+{a_{1}^{2}} b^{2} +{a_{1}^{5}} b^{2} +b^{3} +{a_{1}^{2}} b^{3} +{a_{1}^{3}} b^{3} +a_{1} b^{4} +{a_{1}^{3}} b^{4} +b^{5} +a_{1}b^{5} +{a_{1}^{2}} b^{5} +b^{7})k\\ &&+(a_{1} +{a_{1}^{2}} +{a_{1}^{4}} +{a_{1}^{5}} +b +{a_{1}^{3}} b +{a_{1}^{4}} b +{a_{1}^{5}}b +b^{2} +a_{1} b^{2} +{a_{1}^{3}} b^{2} +{a_{1}^{4}} b^{2} +{a_{1}^{6}} b^{2}\\ &&+b^{3} +{a_{1}^{3}} b^{3} +{a_{1}^{4}} b^{3} +b^{4} +a_{1} b^{4} +{a_{1}^{2}} b^{4} +{a_{1}^{3}} b^{4} +b^{5} +b^{6} +a_{1} b^{6} +b^{7} +b^{8})k^{2}\\ &&+({a_{1}^{3}} +{a_{1}^{5}} +{a_{1}^{2}} b +{a_{1}^{4}} b +{a_{1}^{5}} b^{2} +{a_{1}^{4}} b^{3} +{a_{1}^{3}} b^{4} +{a_{1}^{2}} b^{5})k^{3}\\ &&+({a_{1}^{4}} +{a_{1}^{5}} +{a_{1}^{6}}+{a_{1}^{4}} b +{a_{1}^{4}} b^{2} +{a_{1}^{5}} b^{2} +{a_{1}^{4}} b^{3} )k^{4}+({a_{1}^{7}} +{a_{1}^{6}} b )k^{5}+{a_{1}^{8}} k^{6}. \end{array} $$
(A5)

In (3.27) and (3.28),

$$\begin{array}{@{}rcl@{}} h_{1}&=& 1+{a_{1}^{4}}+{a_{1}^{2}} b+{a_{1}^{4}} b^{2}+{a_{1}^{2}} b^{5}+b^{8}+({a_{1}^{2}} +{a_{1}^{6}} +{a_{1}^{2}} b^{2} +{a_{1}^{2}}b^{4} +{a_{1}^{2}} b^{6} )k\\ &&+({a_{1}^{4}} +{a_{1}^{6}} b +{a_{1}^{4}} b^{4} )k^{2}+({a_{1}^{6}} +{a_{1}^{6}} b^{2} )k^{3}, \end{array} $$
(A6)
$$\begin{array}{@{}rcl@{}} h_{2}&=& {a_{1}^{2}}+{a_{1}^{6}}+b+{a_{1}^{4}} b+{a_{1}^{2}} b^{2}+{a_{1}^{6}} b^{2}+b^{3}+{a_{1}^{4}} b^{3}+{a_{1}^{2}} b^{4}+{a_{1}^{4}}b^{5}+{a_{1}^{2}} b^{6}+{a_{1}^{4}} b^{7}+b^{9}\\ &&+b^{11}+({a_{1}^{4}} +{a_{1}^{8}} +{a_{1}^{4}} b^{4} )k+({a_{1}^{2}} +{a_{1}^{6}} +{a_{1}^{4}} b +{a_{1}^{8}} b +{a_{1}^{6}} b^{4}+{a_{1}^{4}} b^{5} +{a_{1}^{2}} b^{8} )k^{2}\\ &&+({a_{1}^{4}} +{a_{1}^{8}} +{a_{1}^{4}} b^{2} +{a_{1}^{8}} b^{2} +{a_{1}^{4}} b^{4} +{a_{1}^{4}} b^{6} )k^{3}+({a_{1}^{6}} +{a_{1}^{8}} b^{3} +{a_{1}^{6}} b^{4} )k^{4}\\ &&+({a_{1}^{8}} +{a_{1}^{8}} b^{2} )k^{5}. \end{array} $$
(A7)

In (3.30),

$$\begin{array}{@{}rcl@{}} d_{1}&=& {a_{1}^{2}}+{a_{1}^{6}}+a_{1}^{10}+a_{1}^{14}+b+{a_{1}^{4}} b+{a_{1}^{8}} b+a_{1}^{12} b+{a_{1}^{4}} b^{3}+a_{1}^{12} b^{3}\\ &&+{a_{1}^{2}} b^{4}+a_{1}^{10} b^{4}+b^{5}+{a_{1}^{8}} b^{5} +{a_{1}^{6}} b^{6}+{a_{1}^{8}} b^{7}+{a_{1}^{6}} b^{8}+{a_{1}^{8}} b^{11}\\ &&+{a_{1}^{6}} b^{14}+{a_{1}^{2}} b^{16}+b^{17}+{a_{1}^{4}}b^{17} +{a_{1}^{4}} b^{19}+{a_{1}^{2}} b^{20}+b^{21}\\ &&+({a_{1}^{2}} b +{a_{1}^{6}} b +a_{1}^{10} b +a_{1}^{14} b +{a_{1}^{2}} b^{3} +a_{1}^{10} b^{3} +a_{1}^{10}b^{7} +a_{1}^{10} b^{9}\\ &&+{a_{1}^{2}} b^{17} +{a_{1}^{6}} b^{17} +{a_{1}^{2}} b^{19} )k\\ &&+({a_{1}^{2}} +{a_{1}^{6}} +a_{1}^{10} +a_{1}^{14}+{a_{1}^{2}} b^{2} +{a_{1}^{6}} b^{2} +a_{1}^{10} b^{2} +a_{1}^{14} b^{2} +{a_{1}^{8}} b^{3}\\ &&+a_{1}^{12} b^{3} +{a_{1}^{6}} b^{4} +a_{1}^{10}b^{4}+a_{1}^{12} b^{5} +{a_{1}^{6}} b^{6} +{a_{1}^{6}} b^{8} +{a_{1}^{6}} b^{10} \\ && +a_{1}^{10} b^{10} +{a_{1}^{8}} b^{11} +{a_{1}^{6}} b^{12} +{a_{1}^{6}}b^{14} +{a_{1}^{2}} b^{16} +{a_{1}^{2}} b^{18} )k^{2}\\ &&+(a_{1}^{10} b^{3} +a_{1}^{14} b^{3} +a_{1}^{10} b^{5} +a_{1}^{10} b^{7} +a_{1}^{10} b^{9} )k^{3}\\ &&+({a_{1}^{6}}+a_{1}^{14} +{a_{1}^{6}} b^{2} +a_{1}^{14} b^{2} +{a_{1}^{6}} b^{4} +{a_{1}^{6}} b^{6} +{a_{1}^{6}} b^{8}\\ &&+{a_{1}^{6}} b^{10} +{a_{1}^{6}} b^{12} +{a_{1}^{6}} b^{14} )k^{4}, \end{array} $$
(A8)
$$\begin{array}{@{}rcl@{}} d_{2}&=& 1+{a_{1}^{4}}+{a_{1}^{8}}+a_{1}^{12}+{a_{1}^{2}} b+a_{1}^{10} b+b^{2}+{a_{1}^{8}} b^{2}+{a_{1}^{6}} b^{3}+a_{1}^{10}b^{3}\\ &&+{a_{1}^{8}} b^{6}+{a_{1}^{8}} b^{8}+{a_{1}^{6}} b^{11}+b^{16}+{a_{1}^{4}} b^{16}+{a_{1}^{2}} b^{17}+b^{18}\\ &&+({a_{1}^{4}} b +a_{1}^{12} b +{a_{1}^{4}} b^{3} +{a_{1}^{8}} b^{3} +{a_{1}^{4}} b^{5} +{a_{1}^{8}} b^{5} +{a_{1}^{4}} b^{7}\\ &&+{a_{1}^{8}} b^{7} +{a_{1}^{4}} b^{9} +{a_{1}^{8}} b^{9} +{a_{1}^{4}} b^{11} +{a_{1}^{4}} b^{13} +{a_{1}^{4}} b^{15} )k\\ &&+({a_{1}^{4}} +a_{1}^{12} +{a_{1}^{4}} b^{2} +a_{1}^{12} b^{2} +{a_{1}^{4}} b^{4} +{a_{1}^{4}} b^{6} +{a_{1}^{4}} b^{8}\\ &&+{a_{1}^{4}} b^{10} +{a_{1}^{4}} b^{12} +{a_{1}^{4}} b^{14} )k^{2}. \end{array} $$
(A9)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, Xd. On a class of permutation trinomials in characteristic 2. Cryptogr. Commun. 11, 1199–1210 (2019). https://doi.org/10.1007/s12095-018-0342-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12095-018-0342-1

Keywords

Mathematics Subject Classification (2010)

Navigation