Complete weight enumerators of a class of two-weight linear codes

  • Shudi Yang
  • Qin Yue
  • Yansheng Wu
  • Xiangli Kong


Recently, linear codes constructed from defining sets have been investigated extensively and they have many applications. For an odd prime \(p\), we determine the complete weight enumerator and weight enumerator of a class of \(p\)-ary linear codes by choosing a proper defining set. The results show that they have at most two weights and are suitable for applications in secret sharing schemes.


Linear code Complete weight enumerator Weight enumerator Exponential sum 

Mathematics Subject Classification (2010)

94B15 11T71 



The work is partially supported by the National Natural Science Foundation of China (11701317, 61772015, 61472457, 11571380), China Postdoctoral Science Foundation Funded Project (2017M611801) and Jiangsu Planned Projects for Postdoctoral Research Funds (1701104C). This work is also partially supported by Guangzhou Science and Technology Program (201607010144) and the Natural Science Foundation of Shandong Province of China (ZR2016AM04).


  1. 1.
    Ahn, J., Ka, D., Li, C.: Complete weight enumerators of a class of linear codes. Des. Codes Crypt. 83, 83–99 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bae, S., Li, C., Yue, Q.: On the complete weight enumerators of some reducible cyclic codes. Discret. Math. 338(12), 2275–2287 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Blake, I.F., Kith, K.: On the complete weight enumerator of Reed-Solomon codes. SIAM J. Discret. Math. 4(2), 164–171 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Coulter, R.S.: Explicit evaluations of some Weil sums. Acta Arithmetica 83(3), 241–251 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Coulter, R.S.: The number of rational points of a class of artincschreier curves. Finite Fields Appl. 8, 397–413 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Ding, C.: Linear codes from some 2-designs. IEEE Trans. Inf. Theory 61(6), 3265–3275 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Ding, C., Helleseth, T., Kløve, T., Wang, X.: A generic construction of Cartesian authentication codes. IEEE Trans. Inf. Theory 53(6), 2229–2235 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Ding, C., Wang, X.: A coding theory construction of new systematic authentication codes. Theor. Comput. Sci. 330, 81–99 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Ding, K., Ding, C.: Binary linear codes with three weights. IEEE Commun. Lett. 18(11), 1879–1882 (2014)CrossRefGoogle Scholar
  10. 10.
    Ding, K., Ding, C.: A class of two-weight and three-weight codes and their applications in secret sharing. IEEE Trans. Inf. Theory 61(11), 5835–5842 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Dinh, H.Q., Li, C., Yue, Q.: Recent progress on weight distributions of cyclic codes over finite fields. J. Algebra Comb. Discret. Struct. Appl. 2(1), 39–63 (2015)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Feng, K., Luo, J.: Weight distribution of some reducible cyclic codes. Finite Fields Appl. 14(2), 390–409 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Helleseth, T., Kholosha, A.: Monomial and quadratic bent functions over the finite fields of odd characteristic. IEEE Trans. Inf. Theory 52(5), 2018–2032 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Heng, Z., Yue, Q.: Complete weight distributions of two classes of cyclic codes. Cryptogr. Commun. 9(3), 323–343 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Kith, K.: Complete weight enumeration of Reed-Solomon codes. Master’s thesis, Department of Electrical and Computing Engineering, University of Waterloo (1989)Google Scholar
  16. 16.
    Kuzmin, A., Nechaev, A.: Complete weight enumerators of generalized Kerdock code and linear recursive codes over Galois ring. In: Workshop on Coding and Cryptography, pp. 332–336 (1999)Google Scholar
  17. 17.
    Li, C., Bae, S., Ahn, J., Yang, S., Yao, Z.: Complete weight enumerators of some linear codes and their applications. Des. Codes Crypt. 81, 153–168 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Li, C., Yue, Q., Fu, F.W.: Complete weight enumerators of some cyclic codes. Des. Codes Crypt. 80, 295–315 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Lidl, R., Niederreiter, H.: Finite Fields. Encyclopedia of Mathematics and its Applications, p 20. Addison-Wesley, Reading (1983)Google Scholar
  20. 20.
    MacWilliams, F.J., Sloane N.J.A.: The Theory of Error-Correcting Codes, vol. 16. North-Holland Publishing, Amsterdam (1977)zbMATHGoogle Scholar
  21. 21.
    Storer, T.: Cyclotomy and Difference Sets. Markham Publishing Company, Markham (1967)zbMATHGoogle Scholar
  22. 22.
    Vega, G.: The weight distribution of an extended class of reducible cyclic codes. IEEE Trans. Inf. Theory 58(7), 4862–4869 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Wang, Q., Li, F., Ding, K., Lin, D.: Complete weight enumerators of two classes of linear codes. Discret. Math. 340, 467–480 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Yang, S., Kong, X., Tang, C.: A construction of linear codes and their complete weight enumerators. Finite Fields Appl. 48, 196–226 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Yang, S., Yao, Z., Zhao, C.: The weight enumerator of the duals of a class of cyclic codes with three zeros. Applic. Algebra Eng. Commun. Comput. 26(4), 347–367 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Yang, S., Yao, Z., Zhao, C.: The weight distributions of two classes of \( p \)-ary cyclic codes with few weights. Finite Fields Appl. 44, 76–91 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Yang, S., Yao, Z.: Complete weight enumerators of a class of linear codes. Discret. Math. 340, 729–739 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Yuan, J., Ding, C.: Secret sharing schemes from three classes of linear codes. IEEE Trans. Inf. Theory 52(1), 206–212 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Zheng, D., Wang, X., Yu, L., Liu, H.: The weight enumerators of several classes of \(p\)-ary cyclic codes. Discret. Math. 338(7), 1264–1276 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Zhou, Z., Ding, C., Luo, J., Zhang, A.: A family of five-weight cyclic codes and their weight enumerators. IEEE Trans. Inf. Theory 59(10), 6674–6682 (2013)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Shudi Yang
    • 1
  • Qin Yue
    • 2
  • Yansheng Wu
    • 2
  • Xiangli Kong
    • 1
  1. 1.School of Mathematical SciencesQufu Normal UniversityShandongPeople’s Republic of China
  2. 2.Department of MathematicsNanjing University of Aeronautics and AstronauticsNanjingPeople’s Republic of China

Personalised recommendations