On an algorithm generating 2-to-1 APN functions and its applications to “the big APN problem”


Almost perfect nonlinear (APN) functions are of great interest to many researchers since they have the optimal resistance to the differential attack. The existence of bijective APN functions in even number of variables is an important open problem, and there is only one known example of such a function at present. In this paper we consider a special subclass of 2-to-1 vectorial Boolean functions that can allow us to search and construct APN permutations. We proved that each 2-to-1 function is potentially EA-equivalent to a permutation and proposed an algorithm that generates special symbol sequences for constructing 2-to-1 APN functions. Also, we described two methods for searching APN permutations, that are based on sequences generated by this algorithm.

This is a preview of subscription content, log in to check access.


  1. 1.

    Agievich, S., Gorodilova, A., Kolomeec, N., Nikova, S., Preneel, B., Rijmen, V., Shushuev, G., Tokareva, N., Vitkup, V.: Problems, solutions and experience of the first international student’s Olympiad in cryptography. Prikladnaya Diskretnaya Matematika 3(29), 5–28 (2015)

    Google Scholar 

  2. 2.

    Berger, T., Canteaut, A., Charpin, P., Laigle-Chapuy, Y.: On almost perfect nonlinear mappings over \(\mathbb {F}_{2^{n}}\). IEEE Trans. Inform. Theory 52(9), 4160–4170 (2006)

    MathSciNet  MATH  Article  Google Scholar 

  3. 3.

    Beth, T., Ding, C.: On almost perfect nonlinear permutations. Advances in Cryptology, EUROCRYPT’93. Lect. Notes Comput. Sci 765, 65–76 (1993)

    Article  Google Scholar 

  4. 4.

    Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. J. Cryptol. 4(1), 3–72 (1991)

    MathSciNet  MATH  Article  Google Scholar 

  5. 5.

    Blondeau, C., Canteaut, A., Charpin, P.: Differential properties of \(x x^{2^{t}-1}\). IEEE Trans. Inf. Theory 57(12), 8127–8137 (2011)

    MATH  Article  Google Scholar 

  6. 6.

    Blondeau, C., Nyberg, K.: Perfect nonlinear functions and cryptography. Finite Fields and Their Applications 32, 120–147 (2015)

    MathSciNet  MATH  Article  Google Scholar 

  7. 7.

    Brinkmann, M., Leander, G.: On the classification of APN functions up to dimension five. Des. Codes Cryptogr. 49(1–3), 273–288 (2008)

    MathSciNet  MATH  Article  Google Scholar 

  8. 8.

    Browning, K.A., Dillon, J.F., McQuistan, M.T., Wolfe, A.J.: An APN permutation in dimension six. Post-proceedings of the 9-th International Conference on Finite Fields and Their Applications Fq’09. Contemporary Math. AMS 518, 33–42 (2010)

    Article  Google Scholar 

  9. 9.

    Budaghyan, L.: Construction and Analysis of Cryptographic Functions, vol. VIII, p 168. Springer, Berlin (2014)

    Google Scholar 

  10. 10.

    Calderini, M., Sala, M., Villa, I.: A note on APN permutations in even dimension. Finite Fields Their Appl. 46, 1–16 (2017)

    MathSciNet  MATH  Article  Google Scholar 

  11. 11.

    Canteaut, A., Charpin, P., Dobbertin, H.: Binary m-sequences with three-valued crosscorrelation: a proof of Welch conjecture. IEEE Trans. Inf. Theory. 46(1), 4–8 (2000)

    MathSciNet  MATH  Article  Google Scholar 

  12. 12.

    Canteaut, A., Duval, S., Perrin, L.: A generalisation of Dillon’s APN permutation with the best known differential and linear properties for all fields of size \(2^{4k + 2}\). IACR Cryptology ePrint Archive 2016, 887 (2016)

    MATH  Google Scholar 

  13. 13.

    Carlet, C.: Open Questions on Nonlinearity and on APN Functions. In: Koç, Ç., Mesnager, S., Savaş, E. (eds.) Arithmetic of Finite Fields. WAIFI 2014. Lecture Notes in Computer Science, vol. 9061, pp. 83–107 (2015)

    Google Scholar 

  14. 14.

    Carlet, C.: Vectorial Boolean Functions for Cryptography. Ch. 9 of the monograph Boolean Methods and Models in Mathematics, Computer Science, and Engineering, pp. 398–472. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  15. 15.

    Carlet, C., Charpin, P., Zinoviev, V.: Codes, bent functions and permutations suitable for DES-like cryptosystems. Des. Codes Cryptogr. 15, 125–156 (1998)

    MathSciNet  MATH  Article  Google Scholar 

  16. 16.

    Dobbertin, H.: One-to-one highly nonlinear power functions on \(GF(2^{n})\). Appl. Algebra Eng. Commun. Comput. 9(2), 139–152 (1998)

    MATH  Article  Google Scholar 

  17. 17.

    Dobbertin, H.: Almost perfect nonlinear power functions on \({{GF}}(2^{n})\): the Welch case. IEEE Trans. Inf. Theory. 45(4), 1271–1275 (1999)

    MathSciNet  MATH  Article  Google Scholar 

  18. 18.

    Dobbertin, H.: Almost perfect nonlinear functions over GFGF(2n): the Niho case. Inform. and Comput. 151, 57–72 (1999)

    MathSciNet  MATH  Article  Google Scholar 

  19. 19.

    Dobbertin, H.: Almost perfect nonlinear power functions over \({{GF}}(2^{n})\): a new case for n divisible by 5. Proceedings of Finite Fields and Applications FQ5, 113–121 (2000)

  20. 20.

    Glukhov, M.M.: On the approximation of discrete functions by linear functions. Matematicheskie Voprosy Kriptografii 7(4), 29–50 (2016). (in Russian)

    MathSciNet  Article  Google Scholar 

  21. 21.

    Glukhov, M.M.: On the matrices of transitions of differences for some modular groups. Matematicheskie Voprosy Kriptografii 4(4), 27–47 (2013). (in Russian)

    Article  Google Scholar 

  22. 22.

    Gold, R.: Maximal recursive sequences with 3-valued recursive crosscorrelation functions. IEEE Trans. Inform. Theory 14, 154–156 (1968)

    MATH  Article  Google Scholar 

  23. 23.

    Gorodilova, A.A.: Characterization of almost perfect nonlinear functions in terms of subfunctions. Diskr. Mat. 27(3), 3–16 (2016). Discrete Math. Appl. 26(4), 193–202

    MathSciNet  MATH  Article  Google Scholar 

  24. 24.

    Hollmann, H., Xiang, Q.: A proof of the Welch and Niho conjectures on crosscorrelations of binary m-sequences. Finite Fields Their Appl. 7, 253–286 (2001)

    MathSciNet  MATH  Article  Google Scholar 

  25. 25.

    Hou, X.-D.: Affinity of permutations of \({F_{2}^{n}}\). Discrete Appl. Math. - Special issue: Coding and Cryptography Archive 154(2), 313–325 (2006)

    MathSciNet  MATH  Article  Google Scholar 

  26. 26.

    Janwa, H., Wilson, R.: Hyperplane Sections of Fermat Varieties in \(p^{3}\) in char. 2 and some Applications to Cyclic Codes. Proceedings of AAECC-10, Lecture Notes in Computer Science, vol. 673, pp. 180–194. Springer, Berlin (1993)

    Google Scholar 

  27. 27.

    Kasami, T.: The weight enumerators for several classes of subcodes of the second order binary Reed-Muller codes. Inform. and Control. 18, 369–394 (1971)

    MATH  Article  Google Scholar 

  28. 28.

    Lidl, R., Niederreiter, H.: Finite Fields. Encyclopedia of Mathematics and its Applications, vol. 20, p 772. Addison-Wesley, Reading (1983)

    Google Scholar 

  29. 29.

    Nyberg, K.: Differentially uniform mappings for cryptography. Advances in Cryptography, EUROCRYPT’93. Lect. Notes Comput. Sci 765, 55–64 (1994)

    MATH  Article  Google Scholar 

  30. 30.

    Nyberg, K.: S-boxes and round functions with controllable linearity and differential uniformity, FSE’94. Lect. Notes Comput. Sci 1008, 111–130 (1994)

    MATH  Article  Google Scholar 

  31. 31.

    Pasalic, E., Charpin, P.: Some results concerning cryptographically significant mappings over \({{GF}}(2^{n})\). Des. Codes Crypt. 57(3), 257–269 (2010)

  32. 32.

    Perrin, L., Udovenko, A., Biryukov, A.: Cryptanalysis of a theorem: decomposing the only known solution to the big APN problem. In: Robshaw, M., Katz, J. (eds.) Advances in Cryptology - CRYPTO 2016, Part II. Lect. Notes Comput. Sci, vol. 9815, pp. 93–122 (2016)

  33. 33.

    Pott, A.: Almost perfect and planar functions. Des. Codes Cryptography 78(1), 141–195 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  34. 34.

    Tuzhilin, M.E.: APN functions. Prikladnaya Diskretnaya Matematika 3, 14–20 (2009). (in Russian)

    Article  Google Scholar 

  35. 35.

    Vitkup, V.: On symmetric properties of APN functions. J. Appl. Ind. Math. 10(1), 126–135 (2016)

    MathSciNet  MATH  Article  Google Scholar 

Download references


We would like to cordially thank Anastasiya Gorodilova and Natalia Tokareva for useful observations and fruitful discussions all along this work. We sincerely thank Nikolay Kolomeec for his helpful comments and careful reading. We are much indebted to the reviewers for their valuable remarks and for providing the proof of Proposition 5.

Author information



Corresponding author

Correspondence to Valeriya Idrisova.

Additional information

This article is part of the Topical Collection on Special Issue on Boolean Functions and Their Applications

The author was supported by the Russian Foundation for Basic Research (projects no. 17-41-543364 and no. 18-31-00374), by the program of fundamental scientific researches of the SB RAS no. I.5.1.(project no. 0314-2016-0017) and by Russian Ministry of Education and Science (the 5-100 Excellence Program and Project No. 1.12875.2018/12.1).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Idrisova, V. On an algorithm generating 2-to-1 APN functions and its applications to “the big APN problem”. Cryptogr. Commun. 11, 21–39 (2019). https://doi.org/10.1007/s12095-018-0310-9

Download citation


  • Boolean function
  • APN function
  • 2-to-1 function
  • APN permutation
  • Differential uniformity
  • S-box

Mathematics Subject Classification (2010)

  • 94A60
  • 06E30
  • 11T71