Skip to main content
Log in

Backtracking-assisted multiplication

  • Published:
Cryptography and Communications Aims and scope Submit manuscript

Abstract

This paper describes a new multiplication algorithm, particularly suited to lightweight microprocessors when one of the operands is known in advance. The method uses backtracking to find a multiplication-friendly encoding of the operand known in advance. A 68hc05 microprocessor implementation shows that the new algorithm indeed yields a twofold speed improvement over classical multiplication for 128-byte numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. An acronym standing for “M ultiply A dd D ivide”.

  2. When repeated recursively.

  3. These linear relations are unknown to the attacker.

References

  1. Avižienis, A.: Signed-digit number representations for fast parallel arithmetic. IRE Trans. Electron. Comput. EC-10(3):389–400. https://doi.org/10.1109/TEC.1961.5219227 (1961)

  2. Barrett, P.: Implementing the Rivest Shamir and Adleman public key encryption algorithm on a standard digital signal processor. In: Odlyzko, A M (ed.) Advances in Cryptology—CRYPTO’86, volume 263 of Lecture Notes in Computer Science, Santa Barbara, CA, USA, August 1987, pp 311–323. Springer, Heidelberg (1987)

  3. Bernstein, R.: Multiplication by integer constants. Softw. Pract. Exp. 16(7), 641–652 (1986)

    Article  Google Scholar 

  4. Cappello, P.R., Steiglitz, K.: Some complexity issues in digital signal processing. IEEE Trans. Acoust. Speech Signal Process. 32(5), 1037–1041 (1984)

    Article  MATH  Google Scholar 

  5. Certivox. The MIRACL big number library. See https://www.certivox.com/miracl

  6. Cook, S.A.: On the minimum computation time of functions. PhD thesis (1966)

  7. Dempster, A.G., Macleod, M.D.: Constant integer multiplication using minimum adders. IEE Proc.—Circ. Dev. Syst. 141(5), 407–413 (1994)

    Article  MATH  Google Scholar 

  8. Dempster, A.G., Macleod, M.D.: Use of Multiplier Blocks to Reduce Filter Complexity. In: 1994 IEEE International Symposium on Circuits and Systems, ISCAS, 1994, pp. 263-266. London, England (1994). https://doi.org/10.1109/ISCAS.1994.409247

  9. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inf. Theory 22(6), 644–654 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  10. ElGamal, T.: On computing logarithms over finite fields. In: Williams, H.C. (ed.) Advances in Cryptology—CRYPTO’85, volume 218 of Lecture Notes in Computer Science, Santa Barbara, CA, USA, August 18–22, 1986, pp 396–402. Springer, Heidelberg (1986)

  11. Feige, U., Fiat, A., Shamir, A.: Zero knowledge proofs of identity. In: Aho, A. (ed.) 19th Annual ACM Symposium on Theory of Computing, pp. 210–217, New York City, NY, USA, May 25–27, 1987. ACM Press (1987)

  12. Feige, U., Fiat, A., Shamir, A.: Zero-knowledge proofs of identity. J. Cryptol. 1(2), 77–94 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fürer, M.: Faster integer multiplication. SIAM J. Comput. 39(3), 979–1005 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Harvey, D., Van Der Hoeven, J., Lecerf, G.: Even faster integer multiplication. arXiv preprint arXiv:1407.3360 (2014)

  15. Karatsuba, A., Ofman, Y.: Multiplication of many-digital numbers by automatic computers. Doklady Akad. Nauk SSSR 145, 293–294 (1962)

  16. Knuth, D.: The Art of Computer Programming (1968)

  17. Montgomery, P.L.: Modular multiplication without trial division. Math. Comput. 44(170), 519–521 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  18. Schönhage, A., Strassen, V.: Schnelle Multiplikation grosser Zahlen. Computing 7(3–4), 281–292 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  19. Toom, A.L.: The complexity of a scheme of functional elements realizing the multiplication of integers. Soviet Math. Dokl. 3, 714–716 (1963)

    MATH  Google Scholar 

  20. Wu, H., Hasan, M.A.: Closed-form expression for the average weight of signed-digit representations. IEEE Trans. Comput. 48(8), 848–851 (1999)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rémi Géraud.

Additional information

This article is part of the Topical Collection on Recent Trends in Cryptography

Appendix: Source code

Appendix: Source code

figure h
figure i

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferradi, H., Géraud, R., Maimuţ, D. et al. Backtracking-assisted multiplication. Cryptogr. Commun. 10, 17–26 (2018). https://doi.org/10.1007/s12095-017-0254-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12095-017-0254-5

Keywords

Mathematics Subject Classification (2010)

Navigation