On ideal t-tuple distribution of filtering de Bruijn sequence generators

  • Kalikinkar Mandal
  • Bo Yang
  • Guang Gong
  • Mark Aagaard
Article
  • 81 Downloads
Part of the following topical collections:
  1. Special Issue on Sequences and Their Applications

Abstract

A binary de Bruijn sequence is a sequence of period 2n in which every n-tuple occurs exactly once in one period. A de Bruijn sequence is attractive because of having good statistical properties such as long period, balance, high linear complexity and ideal n-tuple distribution. A nonlinear feedback shift register (NLFSR) can be used to generate a de Bruijn sequence. A filtering de Bruijn sequence generator (FDBG) is an NLFSR-based filtering generator constructed by applying a filter function to the internal state of the NLFSR generating a de Bruijn sequence. If the filtering function is balanced, then an FDBG inherits the properties long period, balance, and the lower bound of linear complexity, but its ideal t-tuple distribution property is unknown. In this paper we study ideal t-tuple distribution of filtering de Bruijn (DB) sequence generators. First, we present a construction of a q-ary de Bruijn sequence from a binary de Bruijn sequence. Then, we describe the construction of the FDBG and investigate the ideal t-tuple distribution for two types of the FDBGs. The conditions on the filtering functions for having the ideal t-tuple distribution in the filtering sequences are presented. Finally, we perform an experiment on FDBGs with WG transformations as filtering functions to validate our result and find filtering functions with good cryptographic properties.

Keywords

Pseudorandom sequences Statistical properties De Bruijn sequences Composited construction 

Mathematics Subject Classification (2010)

94A60 

References

  1. 1.
    Alhakim, A., Akinwande, M.: A recursive construction of nonbinary de bruijn sequences. Des. Codes Cryptogr. 60(2), 155–169 (2011)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Li, C., Zeng, X., Helleseth, T., Li, C., Hu, L.: The properties of a class of linear fsrs and their applications to the construction of nonlinear fsrs. IEEE Trans. Inf. Theory 60(5), 3052–3061 (2014)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Li, C., Zeng, X., Li, C., Helleseth, T.: A class of de bruijn sequences. IEEE Trans. Inf. Theory 60(12), 7955–7969 (2014)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Canteaut, A.: Analysis and Design of Symmetric Ciphers. Habilitation for Directing Theses University of Paris 6 (2006)Google Scholar
  5. 5.
    Chan, A. H., Games, R. A., Key, E. L.: On the complexities of de bruijn sequences. J. Comb. Theory A 33(3), 233–246 (1982)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    de Bruijn, N. G.: A combinatorial problem. Proc. Koninklijke Nederlandse Akademie v Wetenschappen 49, 758–764 (1946)MATHGoogle Scholar
  7. 7.
    Fredricksen, H.: A survey of full length nonlinear shift register cycle algorithms. SIAM Rev. 24(2), 195–221 (1982)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Fuster-Sabater, A., Caballero-Gil, P.: On the linear complexity of non-linearly filtered pn-sequences. In: Advances in Cryptology-ASIACRYPT’94. LNCS, vol. 917, pp 80–90. Springer, Berlin (1995)CrossRefGoogle Scholar
  9. 9.
    Golic, J.: On the security of nonlinear filter generators. In: The 3rd International Workshop on Fast Software Encryption. LNCS, vol. 1039, pp 173–188. Springer, Berlin (1996)Google Scholar
  10. 10.
    Golomb, S. W.: On the classification of balanced binary sequences of period 2n - 1. IEEE Trans. Inf. Theory 26(6), 730–732 (1980)CrossRefMATHGoogle Scholar
  11. 11.
    Golomb, S. W.: Shift Register Sequences. Aegean Park Press, Laguna Hills (1981)MATHGoogle Scholar
  12. 12.
    Golomb, S. W., Gong, G.: Signal Design for Good Correlation: For Wireless Communication, Cryptography, and Radar. Cambridge University Press, New York (2004)MATHGoogle Scholar
  13. 13.
    Gong, G., Youssef, A.: Cryptographic properties of the welch-gong transformation sequence generators. IEEE Trans. Inf. Theory 48(11), 2837–2846 (2002)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Good, I. J.: Normal recurring decimals. J. Lon. Math. Soc. 21(3), 167–169 (1946)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Key, E. L.: An analysis of the structure and complexity of nonlinear binary sequence generators. IEEE Trans. Inf. Theory 22, 732–736 (1976)CrossRefMATHGoogle Scholar
  16. 16.
    Mandal, K., Gong, G.: Cryptographically strong de bruijn sequences with large periods. In: Knudsen, L. R., Wu, H (eds.) SAC 2012. LNCS, vol. 7707, pp 104–118. Springer, Heidelberg (2012)Google Scholar
  17. 17.
    Mandal, K., Gong, G.: Feedback reconstruction and implementations of pseudorandom number generators from composited de bruijn sequences. IEEE Trans. Comput. 65(9), 2725–2738 (2016)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Mandal, K., Gong, G.: Generating good span n sequences using orthogonal functions in nonlinear feedback shift registers. In: Open Problems in Mathematics and Computational Science, pp 127–162. Springer, Cham (2014)Google Scholar
  19. 19.
    Massey, J. L., Serconek, S.: A fourier transform approach to the linear complexity of nonlinearly filtered sequences. In: Advances in Cryptology-CRYPTO’94. LNCS, vol. 839, pp. 332–340. Springer-Verlag (1994)Google Scholar
  20. 20.
    Mykkeltveit, J., Szmidt, J.: On cross joining de Bruijn sequences. Contemp. Math. 632, 333–344 (2015)MathSciNetMATHGoogle Scholar
  21. 21.
    Rueppel, R. A.: Analysis and Design of Stream Ciphers. Springer-Verlag, New York (1986)CrossRefMATHGoogle Scholar
  22. 22.
    Siegenthaler, T., Forré, R., Kleiner, A. W.: Generation of binary sequences with controllable complexity and ideal r-tupel distribution. In: Chaum, D., Price, W. (eds.) Advances in Cryptology – EUROCRYPT’87. LNCS, vol. 304. Springer, Berlin (1988)Google Scholar
  23. 23.
    National institute of standards and technology. Digital signature standard (DSS), federal information processing standards publication, FIPS PUB 186-2, Reaffirmed (January 27, 2000)Google Scholar
  24. 24.
    Yang, J. -H., Dai, Z. -D.: Construction of m-ary de bruijn sequences (extended abstract). In: Advances in Cryptology-AUSCRYPT’92. LNCS, vol. 718, pp. 357–363. Springer-Verlag (1993)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Kalikinkar Mandal
    • 1
  • Bo Yang
    • 1
  • Guang Gong
    • 1
  • Mark Aagaard
    • 1
  1. 1.Department of Electrical and Computer EngineeringUniversity of WaterlooWaterlooCanada

Personalised recommendations