Skip to main content
Log in

On lattice-based algebraic feedback shift registers synthesis for multisequences

  • Published:
Cryptography and Communications Aims and scope Submit manuscript

Abstract

In this paper we show that algebraic feedback shift registers synthesis problems over residue class rings, some ramified extensions and some quadratic integer rings for multisequences are reduced to the successive minima problem in lattice theory. Therefore they can be solved by polynomial-time algorithms since the number of multiple sequences is fixed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ajtai, M., Kumar, R., Sivakumar, D.: A sieve algorithm for the shortest lattice vector problem. In: Proceedings of STOC’01, pp. 601–610. ACM (2001)

  2. Ajtai, M., Kumar, R., Sivakumar, D.: Sampling short lattice vectors and the closest lattice vector problem. In: Proceedings of the 17th IEEE Annual Conference on Computational Complexity-CCC, pp. 53–57 (2002)

  3. Arnault, F., Berger, T.P., Necer, A.: Feedback with carry shift registers synthesis with the Euclidean algorithm. IEEE Trans. Inform. Theory 50, 910–917 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Arvind, V., Joglekar, P.S.: Some sieving algorithms for lattice problems. In: FSTTCS, pp. 25–36 (2008)

  5. Baker, G.A., Graves-Morris, P.R.: Padé approximation. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  6. Beckermann, B., Laban, G.: A uniform approach for Hermite padé and simultaneous padé approximants and their matrix-type generalizations. Numerical Algorithms 3, 45–54 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  7. Beckermann, B., Labahn, G.: Fraction-free computation of simultaneous padé approximants. In: International Symposium on Symbolic and Algebraic Computation, pp. 15–24 (2009)

  8. Berlekamp, E.R.: Algebraic Coding Theory. McGraw-Hill, New York (1968)

    MATH  Google Scholar 

  9. Blǒmer, J., Naew, S.: Sampling methods for shortest vectors, closest vectors and successive minima of lattices. Theor. Comput. Sci. 410, 1648–1665 (2009)

    Article  Google Scholar 

  10. Cassels, J.W.: An introduction to the geometry of numbers. Springer, Berlin (1971)

    MATH  Google Scholar 

  11. Dadush, D., Peikert, C., Vempala, S.: Enumerative lattice algorithms in any norm via M-Ellipsoid coverings. arXiv:1011.5666v4

  12. Ding, C.S.: Proof of Massey’s conjectured algorithm, Advances in Cryptology, Lecture Notes in Computer Science, vol. 330, pp. 345–349. Springer, Berlin (1988)

    Google Scholar 

  13. Feng, G.L., Tzeng, K.K.: A generalized Euclidean algorithm for multisequence shift-register synthesis. IEEE Trans. Inform. Theory 35, 584–594 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  14. Feng, G.L., Tzeng, K.K.: A generalization of the Berlekamp-Massey algorithm for multisequence shift-register synthesis with applications to decoding cyclic codes. IEEE Trans. Inform. Theory 37, 1274–1287 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  15. Goresky, M., Klapper, A.: Algebraic shift register sequences. Cambridge University Press, Cambridge (2012)

    MATH  Google Scholar 

  16. Hanrot, G., Stehle, D.: Improved analysis of Kannan’s shortest lattice vector algorithm. In: Proceedings of crypto 2007, LNCS 4622, pp. 170–186 (2007)

  17. Helfrich, B.: Algorithms to construct Minkowski reduced and Hermite reduced bases. Theor. Comput. Sci. 41, 125–139 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hu, H., Hu, L., Feng, D.: On the expected value of the joint 2-adic complexity of periodic binary multisequences, SETA 2006, LNCS 4086, pp. 199–208 (2006)

  19. Kannan, R.: Minkowski’s convex body theorem and integer programming. Math. Oper. Res. 12, 415–440 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  20. Klapper, A., Goresky, M.: 2-Adic shift registers, Fast software encryption. In: Proceedings of 1993, vol. 809, pp. 174–178. Cambridge (1994)

  21. Klapper, A., Goresky, M.: Cryptanalysis based on 2-adic rational approxiamtion. In: CRYPTO 1995, LNCS 963, pp. 262–273 (1995)

  22. Klapper, A., Goresky, M.: Feedback shift registers, 2-adic span, and combiners with memeory. J. Cryptol. 10, 11–47 (1997)

    Article  MATH  Google Scholar 

  23. Klapper, A., Xu, J.: Algebraic feedback shift registers. Theor. Comput. Sci. 226, 61–92 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  24. Klapper, A., Xu, J.: Register synthesis for algebraic feedback shift registers based on non-primes. Des. Codes Crypt. 31, 227–250 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational coefficients. Math. Ann. 261, 515–534 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  26. Li, W., Sidorenko, V., Nielsen, J.: On decoding interleaved Chinese remainder codes IEEE International Symposium on Information Theory, pp. 1053–1056 (2013)

  27. Liu, W., Klapper, A.: A lattice rational approximation algorithm for AFSRs over quadratic integer rings, SETA 2014, LNCS 8865, 200–211 (2014)

  28. Massey, J.L.: Shift-register synthesis and BCH decoding. IEEE Trans. Inform. Theory 15, 122–127 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  29. Mandelbaum, D.: On a class of Arithmetic codes and a decoding algorithm. IEEE Trans. Inf. Theory 22, 85–88 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  30. Micciancio, D.: Efficient reductions among lattice problems. In: Proceedings of the 19th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2008, pp. 84–93. Society for Industrial and Applied Mathematics (2008)

  31. Micciancio, D., Voulgaris, P.: A deterministic single exponential time algorithm for most lattice problems based on Voronoi cell computations. In: STOC, pp. 351–358 (2010)

  32. Mill, W.H.: Continued fractions and linear recurrences. Math. Comput. 29, 173–180 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  33. Nguyen, P.Q., Stehle, D.: Low-dimensional lattice basis reduction revisited. In: Buell, D.A. (ed.) ANTS 2004, LNCS 3076, pp. 338–357 (2004)

  34. Schmidt, G., Sidorenko, V.: Multi-sequence linear shift-register synthesis: the varying length case. In: IEEE International Symposium on Information Theory, pp. 1738–1742 (2006)

  35. Sugiyama, Y., Kasahara, M., Hirasawa, S., Namekawa, T.: A method for solving key equation for decoding Goppa codes. Inform. Contr. 27, 87–99 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  36. Wang, L.-P., Zhu, Y.-F., Pei, D.-Y.: On the lattice basis reduction multisequence synthesis algorithm. IEEE Trans. Inform. Theory 50, 2905–2910 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  37. Xu, J., Klapper, A.: Feedback with carry shift registers over Z/(N). In: Proceedings SETA’98. Springer-Verleg, New York (1998)

    Google Scholar 

  38. Zhao, L., Wen, Q.: On the joint 2-adic complexity of binary multisequences. RAIRO-Theor. Appl. 46, 401–412 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We gratefully thank Wen-Feng Qi, Daniele Micciancio and Weihua Liu for fruitful discussions. We also thank the anonymous reviewers for very helpful suggestions and comments. The research was partially supported by National Natural Science Foundation of China (No. 61170289) and 973 Program (2013CB834203).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Ping Wang.

Additional information

This article is part of the Topical Collection on Sequences and Their Applications.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, LP., Wan, D. On lattice-based algebraic feedback shift registers synthesis for multisequences. Cryptogr. Commun. 10, 455–465 (2018). https://doi.org/10.1007/s12095-017-0230-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12095-017-0230-0

Keywords

Mathematics Subject Classification (2010)

Navigation