Advertisement

Cryptography and Communications

, Volume 10, Issue 3, pp 455–465 | Cite as

On lattice-based algebraic feedback shift registers synthesis for multisequences

  • Li-Ping Wang
  • Daqing Wan
Article
  • 111 Downloads
Part of the following topical collections:
  1. Special Issue on Sequences and Their Applications

Abstract

In this paper we show that algebraic feedback shift registers synthesis problems over residue class rings, some ramified extensions and some quadratic integer rings for multisequences are reduced to the successive minima problem in lattice theory. Therefore they can be solved by polynomial-time algorithms since the number of multiple sequences is fixed.

Keywords

Feedback shift registers Register synthesis N-adic numbers Lattices 

Mathematics Subject Classification (2010)

14G50 11B37 11J13 

Notes

Acknowledgements

We gratefully thank Wen-Feng Qi, Daniele Micciancio and Weihua Liu for fruitful discussions. We also thank the anonymous reviewers for very helpful suggestions and comments. The research was partially supported by National Natural Science Foundation of China (No. 61170289) and 973 Program (2013CB834203).

References

  1. 1.
    Ajtai, M., Kumar, R., Sivakumar, D.: A sieve algorithm for the shortest lattice vector problem. In: Proceedings of STOC’01, pp. 601–610. ACM (2001)Google Scholar
  2. 2.
    Ajtai, M., Kumar, R., Sivakumar, D.: Sampling short lattice vectors and the closest lattice vector problem. In: Proceedings of the 17th IEEE Annual Conference on Computational Complexity-CCC, pp. 53–57 (2002)Google Scholar
  3. 3.
    Arnault, F., Berger, T.P., Necer, A.: Feedback with carry shift registers synthesis with the Euclidean algorithm. IEEE Trans. Inform. Theory 50, 910–917 (2004)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Arvind, V., Joglekar, P.S.: Some sieving algorithms for lattice problems. In: FSTTCS, pp. 25–36 (2008)Google Scholar
  5. 5.
    Baker, G.A., Graves-Morris, P.R.: Padé approximation. Cambridge University Press, Cambridge (1996)MATHGoogle Scholar
  6. 6.
    Beckermann, B., Laban, G.: A uniform approach for Hermite padé and simultaneous padé approximants and their matrix-type generalizations. Numerical Algorithms 3, 45–54 (1992)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Beckermann, B., Labahn, G.: Fraction-free computation of simultaneous padé approximants. In: International Symposium on Symbolic and Algebraic Computation, pp. 15–24 (2009)Google Scholar
  8. 8.
    Berlekamp, E.R.: Algebraic Coding Theory. McGraw-Hill, New York (1968)MATHGoogle Scholar
  9. 9.
    Blǒmer, J., Naew, S.: Sampling methods for shortest vectors, closest vectors and successive minima of lattices. Theor. Comput. Sci. 410, 1648–1665 (2009)CrossRefGoogle Scholar
  10. 10.
    Cassels, J.W.: An introduction to the geometry of numbers. Springer, Berlin (1971)MATHGoogle Scholar
  11. 11.
    Dadush, D., Peikert, C., Vempala, S.: Enumerative lattice algorithms in any norm via M-Ellipsoid coverings. arXiv:1011.5666v4
  12. 12.
    Ding, C.S.: Proof of Massey’s conjectured algorithm, Advances in Cryptology, Lecture Notes in Computer Science, vol. 330, pp. 345–349. Springer, Berlin (1988)Google Scholar
  13. 13.
    Feng, G.L., Tzeng, K.K.: A generalized Euclidean algorithm for multisequence shift-register synthesis. IEEE Trans. Inform. Theory 35, 584–594 (1989)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Feng, G.L., Tzeng, K.K.: A generalization of the Berlekamp-Massey algorithm for multisequence shift-register synthesis with applications to decoding cyclic codes. IEEE Trans. Inform. Theory 37, 1274–1287 (1991)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Goresky, M., Klapper, A.: Algebraic shift register sequences. Cambridge University Press, Cambridge (2012)MATHGoogle Scholar
  16. 16.
    Hanrot, G., Stehle, D.: Improved analysis of Kannan’s shortest lattice vector algorithm. In: Proceedings of crypto 2007, LNCS 4622, pp. 170–186 (2007)Google Scholar
  17. 17.
    Helfrich, B.: Algorithms to construct Minkowski reduced and Hermite reduced bases. Theor. Comput. Sci. 41, 125–139 (1985)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Hu, H., Hu, L., Feng, D.: On the expected value of the joint 2-adic complexity of periodic binary multisequences, SETA 2006, LNCS 4086, pp. 199–208 (2006)Google Scholar
  19. 19.
    Kannan, R.: Minkowski’s convex body theorem and integer programming. Math. Oper. Res. 12, 415–440 (1987)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Klapper, A., Goresky, M.: 2-Adic shift registers, Fast software encryption. In: Proceedings of 1993, vol. 809, pp. 174–178. Cambridge (1994)Google Scholar
  21. 21.
    Klapper, A., Goresky, M.: Cryptanalysis based on 2-adic rational approxiamtion. In: CRYPTO 1995, LNCS 963, pp. 262–273 (1995)Google Scholar
  22. 22.
    Klapper, A., Goresky, M.: Feedback shift registers, 2-adic span, and combiners with memeory. J. Cryptol. 10, 11–47 (1997)CrossRefMATHGoogle Scholar
  23. 23.
    Klapper, A., Xu, J.: Algebraic feedback shift registers. Theor. Comput. Sci. 226, 61–92 (1999)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Klapper, A., Xu, J.: Register synthesis for algebraic feedback shift registers based on non-primes. Des. Codes Crypt. 31, 227–250 (2004)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational coefficients. Math. Ann. 261, 515–534 (1982)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Li, W., Sidorenko, V., Nielsen, J.: On decoding interleaved Chinese remainder codes IEEE International Symposium on Information Theory, pp. 1053–1056 (2013)Google Scholar
  27. 27.
    Liu, W., Klapper, A.: A lattice rational approximation algorithm for AFSRs over quadratic integer rings, SETA 2014, LNCS 8865, 200–211 (2014)Google Scholar
  28. 28.
    Massey, J.L.: Shift-register synthesis and BCH decoding. IEEE Trans. Inform. Theory 15, 122–127 (1969)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Mandelbaum, D.: On a class of Arithmetic codes and a decoding algorithm. IEEE Trans. Inf. Theory 22, 85–88 (1976)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Micciancio, D.: Efficient reductions among lattice problems. In: Proceedings of the 19th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2008, pp. 84–93. Society for Industrial and Applied Mathematics (2008)Google Scholar
  31. 31.
    Micciancio, D., Voulgaris, P.: A deterministic single exponential time algorithm for most lattice problems based on Voronoi cell computations. In: STOC, pp. 351–358 (2010)Google Scholar
  32. 32.
    Mill, W.H.: Continued fractions and linear recurrences. Math. Comput. 29, 173–180 (1975)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Nguyen, P.Q., Stehle, D.: Low-dimensional lattice basis reduction revisited. In: Buell, D.A. (ed.) ANTS 2004, LNCS 3076, pp. 338–357 (2004)Google Scholar
  34. 34.
    Schmidt, G., Sidorenko, V.: Multi-sequence linear shift-register synthesis: the varying length case. In: IEEE International Symposium on Information Theory, pp. 1738–1742 (2006)Google Scholar
  35. 35.
    Sugiyama, Y., Kasahara, M., Hirasawa, S., Namekawa, T.: A method for solving key equation for decoding Goppa codes. Inform. Contr. 27, 87–99 (1975)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Wang, L.-P., Zhu, Y.-F., Pei, D.-Y.: On the lattice basis reduction multisequence synthesis algorithm. IEEE Trans. Inform. Theory 50, 2905–2910 (2004)MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Xu, J., Klapper, A.: Feedback with carry shift registers over Z/(N). In: Proceedings SETA’98. Springer-Verleg, New York (1998)Google Scholar
  38. 38.
    Zhao, L., Wen, Q.: On the joint 2-adic complexity of binary multisequences. RAIRO-Theor. Appl. 46, 401–412 (2012)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.State Key Laboratory of Information Security, Institute of Information EngineeringChinese Academy of SciencesBeijingChina
  2. 2.Data Assurance and Communications Security Research CenterChinese Academy of SciencesBeijingChina
  3. 3.University of Chinese Academy of SciencesBeijingChina
  4. 4.Department of MathematicsUniversity of CaliforniaIrvineUSA

Personalised recommendations