Cryptography and Communications

, Volume 9, Issue 2, pp 241–272 | Cite as

A mass formula for negacyclic codes of length 2k and some good negacyclic codes over \(\mathbb {Z}_{4}+u\mathbb {Z}_{4}\)

  • Rama Krishna Bandi
  • Maheshanand Bhaintwal
  • Nuh Aydin
Article

Abstract

In this paper, we study negacyclic codes of length 2k over the ring \(R=\mathbb {Z}_{4}+u\mathbb {Z}_{4}\), u2 = 0. We have obtained a mass formula for the number of negacyclic of length 2k over R. We have also determined the number of self-dual negacyclic codes of length 2k over R. This study has been further generalized to negacyclic codes of any even length using discrete Fourier transform approach over R. We have conducted an exhaustive search and obtained some new \(\mathbb {Z}_{4}\)-linear codes with good parameters.

Keywords

Codes over \(\mathbb {Z}_{4}+u\mathbb {Z}_{4}\) Negacyclic codes Cyclic codes Repeated root cyclic codes 

Mathematics Subject Classification (2010)

94B05 94B60 

References

  1. 1.
    Abualrub, T., Oehmke, R.: Cyclic codes of length 2e over \(\mathbb {Z}_{4}\). Discrete Appl. Math. 128, 3–9 (2003)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Abualrub, T., Oehmke, R.: On the generators of \(\mathbb {Z}_{4}\) cyclic codes of length 2e. IEEE Trans. Inf. Theory 49(9), 2126–2133 (2003)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Database of \(\mathbb {Z}_{4}\) codes. [online] Z4Codes.info (Accessed 28 January 2015)Google Scholar
  4. 4.
    Aydin, N., Asamov, T.: A database of \(\mathbb {Z}_{4}\) codes. J. Comb. Inf. Syst. Sci. 34(1–4), 1–12 (2009)MATHGoogle Scholar
  5. 5.
    Bandi, R.K., Bhaintwal, M.: Cyclic codes over \(\mathbb {Z}_{4}+u\mathbb {Z}_{4}\), To appear in the proceedings of the Seventh International Workshop on Signal Design and its Applications in Communications, September 13–18, 2015, Bengaluru, IndiaGoogle Scholar
  6. 6.
    Bandi, R.K., Bhaintwal, M.: Negaycyclic codes of length 2k over \(\mathbb {Z}_{4}+u\mathbb {Z}_{4}\), To apper in Int. J. Comput. Math., doi:10.1080/00207160.2015.1112380
  7. 7.
    Berlekamp, E.R.: Negacyclic codes for the Lee metric. In: Proceedings of Conference Combinatorial Mathematics and Its Applications, pp. 298–316. Chapel Hill: Univ, North Carolina Press (1968)Google Scholar
  8. 8.
    Blackford, T.: Negacyclic codes over \(\mathbb {Z}_{4}\) of even length. IEEE Trans. Inf. Theory 49(6), 1417–1424 (2003)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Blackford, T.: Cyclic codes over of \(\mathbb {Z}_{4}\) oddly even length. Discrete Appl. Math. 128, 27–46 (2003)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Castagnoli, G., Massey, J.L., Schoeller, P.A., Seemann, N.V.: On repeated-root cyclic codes. IEEE Trans. Inf. Theory 37, 337–342 (1991)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Dinh, H.Q.: Complete distances of all negacyclic codes of length 2s over \(\mathbb {Z}_{2^{a}}\). IEEE Trans. Inf. Theory 53(1), 147–161 (2007)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Dinh, H.Q.: Negacyclic codes of length 2s over Galois rings. IEEE Trans. Inf. Theory 51(12), 4252–4262 (2005)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Dinh, H.Q., Permouth, S.R.L.: Cyclic codes and negacyclic codes over finite chain ring. IEEE Trans. Inf. Theory 50(8), 1728–1744 (2004)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Dougherty, S.T., Ling, S.: Cyclic codes over \(\mathbb {Z}_{4}\) of even length. Des. Codes Cryptogr. 39, 127–153 (2006)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Lint, J.H.V.: Repeated-root cyclic codes. IEEE Trans. Inf. Theory 37, 343–345 (1991)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Norton, G., Salagean, A.: On the structure of linear and cyclic codes over a finite chain ring. Appl. Algebra Eng. Comm. Comput. 10(6), 489–506 (2000)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Tang, L.Z., Soh, C.B., Gunawan, E.: A note on the q-ary image of a q -ary repeated-root cyclic code. IEEE Trans. Inf. Theory 43, 732–737 (1997)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Wolfmann, J.: Negacyclic and cyclic codes over \(\mathbb {Z}_{4}\). IEEE Trans. Inf. Theory 45(7), 2527–2532 (1999)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Yildiz, B., Karadeniz, S.: Linear codes over \(\mathbb {Z}_{4}+u\mathbb {Z}_{4}\), MacWilliams identities, projections, and formally self-dual codes. Finite Fields Appl. 27, 24–40 (2014)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Yildiz, B., Aydin, N.: On cyclic codes over \(\mathbb {Z}_{4} + u\mathbb {Z}_{4}\) and their \(\mathbb {Z}_{4}\)-images. Int. J. Inf. Coding Theory 2(4), 226–237 (2014)CrossRefGoogle Scholar
  21. 21.
    Zimmermann, K.H: On generalizations of repeated-root cyclic codes. IEEE Trans. Inf. Theory 42(2), 641–649 (1996)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Rama Krishna Bandi
    • 1
  • Maheshanand Bhaintwal
    • 1
  • Nuh Aydin
    • 2
  1. 1.Department of MathematicsIndian Institute of Technology RoorkeeRoorkeeIndia
  2. 2.Department of Mathematics and StatisticsKenyon CollegeGambierUSA

Personalised recommendations