Skip to main content

Statistical properties of half--sequences

Abstract

We study statistical properties of N-ary FCSR sequences with odd prime connection integer q and least period (q−1)/2, which are called half- -sequences. More precisely, for any N > 1 our first aim is to give upper bounds on the number of occurrences of two symbols with a fixed distance between them and the number of occurrences of three consecutive symbols using certain character sums. Our second aim is to give a bound on the autocorrelation of half- -sequences for N = 2. Finally, we give bounds on the number of occurrences of two symbols with a fixed distance between them in an -sequence and obtain conditions on the connection integer that guarantee the distribution is highly uniform.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Arnault, F., Berger, T.P.: F-FCSR: design of a new class of stream ciphers. Fast Software Encryption. Springer Berlin Heidelberg (2005)

  2. 2.

    Arnault, F., Berger, T.P., Lauradoux, C.: Update on F-FCSR stream cipher. State of the Art of Stream Ciphers Workshop. Leuven, Belgium (2006)

  3. 3.

    Arnault, F., Berger, T.P., Lauradoux, C.: F-FCSR stream ciphers. New Stream Cipher Designs, pp. 170–178. Springer, Berlin Heidelberg (2008)

  4. 4.

    Canteaut, A.: Open problems related to algebraic attacks on stream ciphers. In: Ytrehus, Ø. (ed.) Coding and Cryptography, vol. 3969, pp 120–134. Springer Berlin Heidelberg Lecture Notes in Computer Science Volume (2006)

  5. 5.

    Cochrane, T.: On a trigonometric inequality of Vinogradov. J. Number Theory 27.1, 9–16 (1987)

    MathSciNet  Article  MATH  Google Scholar 

  6. 6.

    Courtois, N., Meier, W.: Algebraic attacks on stream ciphers with linear feedback. In: Biham, E. (ed.) Advances in Cryptology-EUROCRYPT 2003, vol. 2656, pp 345–359. Springer Berlin Heidelberg Lecture Notes in Computer Science (2003)

  7. 7.

    Courtois, N.: General principles of algebraic attacks and new design criteria for cipher components. In: Dobbertin, H., Rijmen, V., Sowa, A. (eds.) Advanced Encryption Standard-AES, vol. 3373, pp 67–83. Springer Berlin Heidelberg Lecture Notes in Computer Science (2005)

  8. 8.

    Goresky, M., Klapper, A.: Algebraic Shift Register Sequences. Cambridge University Press, Cambridge (2012)

    MATH  Google Scholar 

  9. 9.

    Goresky, M., Klapper, A.: Arithmetic crosscorrelations of feedback with carry shift register sequences. IEEE Trans. Inf. Theory 43.7, 1342–1345 (1997)

    MathSciNet  Article  MATH  Google Scholar 

  10. 10.

    Goresky, M., Klapper, A.: Fibonacci and Galois representations of feedback-with-carry shift registers. IEEE Trans. Inf. Theory 48.11, 2826–2836 (2002)

    MathSciNet  Article  MATH  Google Scholar 

  11. 11.

    Gu, T., Klapper, A.: Distribution properties of half- -sequence. Sequences and Their Applications - SETA 2014, pp 234–245 (2014)

  12. 12.

    Golomb, S.: Shift Register Sequences. Aegean Park Press, Laguna Hills CA (1982)

    MATH  Google Scholar 

  13. 13.

    Klapper, A.: 2-adic shift registers. Fast Software Encryption. Springer Berlin Heidelberg (1994)

  14. 14.

    Klapper, A., Goresky, M.: Large period nearly deBruijn FCSR sequences. Advances in CryptologyEUROCRYPT95. Springer Berlin Heidelberg (1995)

  15. 15.

    Klapper, A., Goresky, M.: Feedback shift registers, 2-adic span, and combiners with memory. J. Cryptol. 10.2, 111–147 (1997)

    MathSciNet  Article  MATH  Google Scholar 

  16. 16.

    Klapper, A.: A survey of feedback with carry shift registers. Sequences and Their Applications-SETA 2004. Springer Berlin Heidelberg, 56–71 (2005)

  17. 17.

    Lee, D., Park, S.: Word-based FCSRs with fast software implementations. 13 1, 1–5 (2011)

    Google Scholar 

  18. 18.

    Lidl, R., Niederreiter, H.: Finite Fields in Encyclopedia of Mathematics. Cambridge University Press, Cambridge (1983)

    MATH  Google Scholar 

  19. 19.

    Nagell, T.: Introduction to Number Theory. 2nd reprint edition. Chelsea Publishing (2001)

  20. 20.

    Qi, W., Xu, H.: Partial period distribution of FCSR sequences. IEEE Trans. Inf. Theory 49.3, 761–765 (2003)

    MathSciNet  MATH  Google Scholar 

  21. 21.

    Simon, F., Meier, W., Stegemann, D.: Some remarks on FCSRs and implications for stream ciphers. J. Math. Cryptol. 3.3, 227–236 (2009)

    MathSciNet  MATH  Google Scholar 

  22. 22.

    Tian, T., Qi, W.: Autocorrelation and distinctness of decimations of -sequences. SIAM J. Discret. Math. 23.2, 805–821 (2009)

    MathSciNet  Article  MATH  Google Scholar 

  23. 23.

    Vinogradov, I.M.: Elements of Number Theory. Dover Publications Inc., New York (1954)

    MATH  Google Scholar 

  24. 24.

    Xu, H., Qi, W.: Autocorrelations of maximum period FCSR sequences. SIAM J. Discret. Math. 20.3, 568–577 (2006)

    MathSciNet  Article  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the anonymous reviewers for their valuable suggestions. We would also like to thank Dr. Zhixiong Chen for his help and advice in this work. This material is based upon work supported by the National Science Foundation under Grant No. CNS-1420227. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ting Gu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gu, T., Klapper, A. Statistical properties of half--sequences. Cryptogr. Commun. 8, 383–400 (2016). https://doi.org/10.1007/s12095-015-0152-7

Download citation

Keywords

  • Feedback with carry shift register (FCSR)
  • Half- -sequences
  • -sequences
  • Autocorrelation

Mathematics Subject Classification (2010)

  • 11T23
  • 94A55
  • 94A60