Generalized Bent Functions - Some General Construction Methods and Related Necessary and Sufficient Conditions


In this article we present a broader theoretical framework useful in studying the properties of so-called generalized bent functions. We give the sufficient conditions (and in many cases also necessary) for generalized bent functions when these functions are represented as a linear combination of: generalized bent; Boolean bent; and a mixture of generalized bent and Boolean bent functions. These conditions are relatively easy to satisfy and by varying the variables that specify these linear combinations many different classes of generalized bent functions can be derived. In particular, based on these results, we provide some generic construction methods of these functions and demonstrate that some previous methods are just special cases of the results given in this article.

This is a preview of subscription content, access via your institution.


  1. 1.

    Carlet, C.: Two new classes of bent functions. Eurocrypt ’93, LNCS, 765, pp. 77–101 (1994)

  2. 2.

    Dillon, J. F.: Elementary Hadamard difference sets. PhD Thesis, University of Maryland (1974)

  3. 3.

    Dobbertin, H.: Construction of bent functions and balanced Boolean functions with high nonlinearity. Fast Software Encryption, Leuven 1994, LNCS 1008, Springer-Verlag, 61–74 (1995)

  4. 4.

    Golay, M.J.E.: Complementary series. IRE Trans. Inf. Theory 7(2), 82–87 (1961)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Kumar, P.V., Scholtz, R.A., Welch, L.R.: Generalized bent functions and their properties. J. Comb. Theory Series A 40, 90–107 (1985)

    MathSciNet  Article  MATH  Google Scholar 

  6. 6.

    McFarland, R.L.: A family of noncyclic difference sets. J. Comb. Theory Series A 15, 1–10 (1973)

    MathSciNet  Article  MATH  Google Scholar 

  7. 7.

    Schmidt, K.U.: Quaternary constant-amplitude codes for multicode CDMA, IEEE International Symposium on Information Theory, ISIT’2007, Nice, France. Available at arXiv:0611162 (2007)

  8. 8.

    Schmidt, K.U.: Complementary sets, generalized Reed-Muller Codes, and power control for OFDM. IEEE Trans. Inf. Theory 52(2), 808–814 (2007)

    Article  Google Scholar 

  9. 9.

    Singh, B.K.: Secondary constructions on generalized bent functions. IACR. Cryptol. ePrint. Arch., 17–17 (2012)

  10. 10.

    Singh, B.K.: On cross-correlation spectrum of generalized bent functions in generalized Maiorana-McFarland class. Inf. Sci. Lett. 2(3), 139–145 (2013)

    Article  Google Scholar 

  11. 11.

    Solé, P., Tokareva, N.: Connections between quaternary and binary bent functions. Available at (2009)

  12. 12.

    Solodovnikov, V.I.: Bent functions from a finite Abelian group into a finite Abelian group. Discret. Math. Appl. 12(2), 111–126 (2002)

    MathSciNet  MATH  Google Scholar 

  13. 13.

    Stanica, P., Gangopadhyay, S., Singh, B.K.: Some results concerning generalized bent functions. Available at (2011)

  14. 14.

    Stanica, P., Martinsen, T., Gangopadhyay, S., Singh, B.K., Bent and generalized bent Boolean functions. Des. Codes Crypt. 69, 77–94 (2013)

    Article  MATH  Google Scholar 

  15. 15.

    Stanica, P., Martinsen, T.: Octal bent generalized Boolean Functions. IACR. Cryptol. ePrint. Arch., 89–89 (2011)

  16. 16.

    Tokareva, N.N.: Generalizations of bent functions - a survey. J. Appl. Ind. Math. 5(1), 110–129 (2011)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Zhao, Y., Li, H.: On bent functions with some symmetric properties. Discret. Appl. Math. 154, 2537–2543 (2006)

    Article  MATH  Google Scholar 

Download references


Samir Hodžić is supported in part by the Slovenian Research Agency (research program P1-0285 and Young Researchers Grant) and Enes Pasalic is supported in part by the Slovenian Research Agency (research program P3-0384 and research project J1-6720).

Author information



Corresponding author

Correspondence to S. Hodžić.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hodžić, S., Pasalic, E. Generalized Bent Functions - Some General Construction Methods and Related Necessary and Sufficient Conditions. Cryptogr. Commun. 7, 469–483 (2015).

Download citation


  • Generalized boolean functions
  • Generalized bent functions
  • Walsh-Hadamard transform

Mathematics Subject Classification (2010)

  • 94A60
  • 11T71