Skip to main content
Log in

Small stopping sets in Steiner triple systems

  • Published:
Cryptography and Communications Aims and scope Submit manuscript

Abstract

The size of the smallest stopping set in a low-density parity check (LDPC) code determines, to an extent, the performance of iterative decoding methods over the binary erasure channel. In an LDPC code arising from a block design, a stopping set is a subset of its blocks with the property that every point belonging to one of the selected blocks belongs to at least two of them. While some Steiner triple systems have no stopping sets of size 5 or less, it is shown that every Steiner triple system has a stopping set of size at most 7. The proof can be viewed as an application of polynomial identities among configuration counts that generalize the family of known linear identities. While no example of a Steiner triple system whose smallest stopping set has size seven is known, it is shown that a partial Steiner triple system on v points with c·v 1.8 triples that has no stopping set of size less than 7 exists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Colbourn, C.J.: Triple systems. In: Colbourn, C.J., Dinitz, J.H. (eds.) Handbook of Combinatorial Designs, 2nd edn., pp. 58–72. CRC/Chapman and Hall, Boca Raton (2007)

    Google Scholar 

  2. Colbourn, C.J.: The configuration polytope of ℓ-line configurations in Steiner triple systems. Math. Slovaca (2008, in press)

  3. Colbourn, C.J., Mendelsohn, E., Rosa, A., Širáň, J.: Anti-mitre Steiner triple systems. Graphs Comb. 10, 215–224 (1994)

    Article  MATH  Google Scholar 

  4. Colbourn, C.J., Rosa, A.: Triple Systems. Oxford University Press, Oxford (1999)

    MATH  Google Scholar 

  5. Colbourn, M.J., Colbourn, C.J., Rosenbaum, W.L.: Trains: an invariant for Steiner triple systems. Ars Comb. 13, 149–162 (1982)

    MATH  MathSciNet  Google Scholar 

  6. Danziger, P., Mendelsohn, E., Grannell, M.J., Griggs, T.S.: Five-line configurations in Steiner triple systems. Util. Math. 49, 153–159 (1996)

    MATH  MathSciNet  Google Scholar 

  7. Di, C., Proietti, D., Richardson, T., Telatar, E., Urbanke, R.: Finite length analysis of low-density parity-check codes on the binary erasure channel. IEEE Trans. Inf. Theory 48, 1570–1579 (2001)

    MathSciNet  Google Scholar 

  8. Erdős, P.: Problems and results in combinatorial analysis. Creat. Math. 9, 25 (1976)

    Google Scholar 

  9. Forbes, A.D., Grannell, M.J., Griggs, T.S.: Configurations and trades in Steiner triple systems. Australas. J. Comb. 29, 75–84 (2004)

    MATH  MathSciNet  Google Scholar 

  10. Forbes, A.D., Grannell, M.J., Griggs, T.S.: On 6-sparse Steiner triple systems. J. Comb. Theory (A) 114, 235–252 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Fujiwara, Y.: Constructions for anti-mitre Steiner triple systems. J. Comb. Des. 13, 286–291 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  12. Fujiwara, Y.: Infinite classes of anti-mitre and 5-sparse Steiner triple systems. J. Comb. Des. 14, 237–250 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Fujiwara, Y., Colbourn, C.J.: A Combinatorial Approach to X-Tolerant Compaction Circuits. (2007, in press)

  14. Grannell, M.J., Griggs, T.S., Mendelsohn, E.: A small basis for four-line configurations in Steiner triple systems. J. Comb. Des. 3, 51–59 (1994)

    Article  MathSciNet  Google Scholar 

  15. Grannell, M.J., Griggs, T.S., Whitehead, C.A.: The resolution of the anti-Pasch conjecture. J. Comb. Des. 8, 300–309 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  16. Horáak, P., Phillips, N., Wallis, W.D., Yucas, J.: Counting frequencies of configurations in Steiner triple systems. Ars Comb. 46, 65–75 (1997)

    MathSciNet  Google Scholar 

  17. Kashyap, N., Vardy, A.: Stopping sets in codes from designs. In Proc. IEEE Intl. Symp. Inform. Theory (ISIT), p. 122. IEEE, Yokohama (2003)

    Chapter  Google Scholar 

  18. Kim, S., No, J.S., Chung, H., Shinj, D.J.: Quasi-cyclic low-density parity-check codes with girth larger than 12. IEEE Trans. Inf. Theory 53(8), 2885–2891 (2007)

    Article  Google Scholar 

  19. Kou, Y., Lin, S., Fossorier, M.: Low density parity check codes based on finite geometries: a rediscovery and new results. IEEE Trans. Inf. Theory 47, 2711–2736 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  20. Laendner, S., Milenkovic, O.: Codes based on latin squares: stopping set, trapping set, and cycle-length distribution analysis. IEEE Trans. Commun. 55, 303–312 (2007)

    Article  Google Scholar 

  21. Lazebnik, F., Verstraëte, J.: On hypergraphs of girth five. Electron. J. Comb. 10 Research Paper 25, 15 (electronic) (2003)

  22. Ling, A.C.H., Colbourn, C.J., Grannell, M.J., Griggs, T.S.: Construction techniques for anti-Pasch Steiner triple systems. J. Lond. Math. Soc. 61(2), 641–657 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  23. Orlitsky, A., Viswanathan, K., Zhang, J.: Stopping set distribution of LDPC code ensembles. IEEE Trans. Inf. Theory 51(3), 929–953 (2005)

    Article  MathSciNet  Google Scholar 

  24. Ruzsa, I., Szemerédi, E.: Triple systems with no six points carrying three triangles. Combinatorics (Proc. Fifth Hungarian Colloq., Keszthely, 1976), vol. II, pp. 939–945. Colloq. Math. Soc. János Bolyai, 18. North-Holland, Amsterdam (1978)

    Google Scholar 

  25. Stinson, D.R.: A comparison of two invariants for Steiner triple systems: fragments and trains. Ars Comb. 16, 69–76 (1983)

    MathSciNet  Google Scholar 

  26. White, H.S.: Triple-systems as transformations, and their paths among triads. Trans. Am. Math. Soc. 14, 6–13 (1913)

    Article  Google Scholar 

  27. Wolfe, A.: The resolution of the anti-mitre Steiner triple system conjecture. J. Comb. Des. 14, 229–236 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  28. Xia, S.-T., Fu, F.-W.: On the stopping distance of finite geometry LDPC codes. IEEE Commun. Lett. 10(5), 381–383 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles J. Colbourn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colbourn, C.J., Fujiwara, Y. Small stopping sets in Steiner triple systems. Cryptogr. Commun. 1, 31–46 (2009). https://doi.org/10.1007/s12095-008-0002-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12095-008-0002-y

Keywords

Navigation