Skip to main content
Log in

LncRNA XXYLT1-AS2 promotes tumor progression via autophagy inhibition through ubiquitinated degradation of TFEB in hepatocellular carcinoma

  • RESEARCH ARTICLE
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Purpose

There is compelling evidence that long-stranded non-coding RNAs (lncRNAs) play an important role in the progression of hepatocellular carcinoma (HCC). The aim of this study was to investigate the role of lncRNA XXYLT1 antisense-2 (XXYLT1-AS2) in HCC progression.

Methods

Real-time PCR was used to assess the levels of XXYLT1-AS2 in plasma from HCC and normal patients. Cell proliferation, apoptosis, migration, and invasion were monitored, and tumor xenografts were established to investigate the biological functions of XXYLT1-AS2 by gain-of-function and loss-of-function studies in vitro and in vivo, the expression of autophagy biomarkers and transcriptional factor EB (TFEB) was examined by immunoprecipitation, ubiquitination assays, and western blotting. Autophagy inhibitor, 3-methyladenine (3MA), and proteasome inhibitor, MG132, were used to verify the role of autophagy in HCC progression and the effect of XXYLT1-AS2 on TFEB ubiquitination, respectively.

Results

In this study, we identified that lncRNA XXYLT1-AS2 is highly expressed in HCC plasma and promotes tumor growth in vivo. In functional studies, it was found that silent expression of XXYLT1-AS2 inhibited HCC proliferation, migration, invasion, and activated autophagy of HCC cells, which were attenuated by autophagy inhibitor, 3MA. Mechanistically, XXYLT1-AS2 decreased the protein level of TFEB through promoting its degradation by ubiquitin proteasome pathway.

Conclusion

XXYLT1-AS2 plays an oncogenic role in HCC progression through inhibition of autophagy via promoting the degradation of TFEB, and thus could be a novel target for HCC treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Braun F, Schafer JP, Dobbermann H, Becker T, Linecker M. Hepatocellular carcinoma. Chirurgie (Heidelb). 2022;93(7):635–43.

    Article  PubMed  Google Scholar 

  2. Sonbol MB, Riaz IB, Naqvi S, Almquist DR, Mina S, Almasri J, et al. Systemic therapy and sequencing options in advanced hepatocellular carcinoma: a systematic review and network meta-analysis. JAMA Oncol. 2020;6(12): e204930.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Hu X, Jiang J, Xu Q, Ni C, Yang L, Huang D. A systematic review of long noncoding RNAs in hepatocellular carcinoma: molecular mechanism and clinical implications. Biomed Res Int. 2018;2018:8126208.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Chi Y, Wang D, Wang J, Yu W, Yang J. Long Non-Coding RNA in the pathogenesis of cancers. Cells-Basel. 2019;8(9).

  5. Bridges MC, Daulagala AC, Kourtidis A. LNCcation: lncRNA localization and function. J Cell Biol. 2021;220(2).

  6. Kang CL, Qi B, Cai QQ, Fu LS, Yang Y, Tang C, et al. LncRNA AY promotes hepatocellular carcinoma metastasis by stimulating ITGAV transcription. Theranostics. 2019;9(15):4421–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang YL, Liu JY, Yang JE, Yu XM, Chen ZL, Chen YJ, et al. Lnc-UCID promotes G1/S transition and hepatoma growth by preventing DHX9-mediated CDK6 down-regulation. Hepatology. 2019;70(1):259–75.

    Article  CAS  PubMed  Google Scholar 

  8. Tan W, Nerurkar SN, Cai HY, Ng H, Wu D, Wee Y, et al. Overview of multiplex immunohistochemistry/immunofluorescence techniques in the era of cancer immunotherapy. Cancer Commun. 2020;40(4):135–53.

    Article  Google Scholar 

  9. Zhang H, Zhang Y, Zhu X, Chen C, Zhang C, Xia Y, et al. DEAD box protein 5 inhibits liver tumorigenesis by stimulating autophagy via interaction with p62/SQSTM1. Hepatology. 2019;69(3):1046–63.

    Article  CAS  PubMed  Google Scholar 

  10. Rusmini P, Cortese K, Crippa V, Cristofani R, Cicardi ME, Ferrari V, et al. Trehalose induces autophagy via lysosomal-mediated TFEB activation in models of motoneuron degeneration. Autophagy. 2019;15(4):631–51.

    Article  CAS  PubMed  Google Scholar 

  11. Li C, Wang L. TFEB-dependent autophagy is involved in scavenger receptor OLR1/LOX-1-mediated tumor progression. Autophagy. 2022;18(2):462–4.

    Article  CAS  PubMed  Google Scholar 

  12. Fang S, Wan X, Zou X, Sun S, Hao X, Liang C, et al. Arsenic trioxide induces macrophage autophagy and atheroprotection by regulating ROS-dependent TFEB nuclear translocation and AKT/mTOR pathway. Cell Death Dis. 2021;12(1):88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Paquette M, El-Houjeiri L, C ZL, Puustinen P, Blanchette P, Jeong H, et al. AMPK-dependent phosphorylation is required for transcriptional activation of TFEB and TFE3. Autophagy. 2021;17(12):3957–75.

  14. Sha Y, Rao L, Settembre C, Ballabio A, Eissa NT. STUB1 regulates TFEB-induced autophagy-lysosome pathway. EMBO J. 2017;36(17):2544–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nassour J, Radford R, Correia A, Fuste JM, Schoell B, Jauch A, et al. Autophagic cell death restricts chromosomal instability during replicative crisis. Nature. 2019;565(7741):659–63.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lim LJ, Wong S, Huang F, Lim S, Chong SS, Ooi LL, et al. Roles and regulation of long noncoding RNAs in hepatocellular carcinoma. Cancer Res. 2019;79(20):5131–9.

    Article  CAS  PubMed  Google Scholar 

  17. Yuan D, Chen Y, Li X, Li J, Zhao Y, Shen J, et al. Long non-coding RNAs: potential biomarkers and targets for hepatocellular carcinoma therapy and diagnosis. Int J Biol Sci. 2021;17(1):220–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang Q, Yang Y, Fu X, Wang Z, Liu Y, Li M, et al. Long noncoding RNA XXYLT1-AS2 regulates proliferation and adhesion by targeting the RNA binding protein FUS in HUVEC. Atherosclerosis. 2020;298:58–69.

    Article  CAS  PubMed  Google Scholar 

  19. Mathias C, Muzzi J, Antunes BB, Gradia DF, Castro M, Carvalho DOJ. Unraveling immune-related lncRNAs in breast cancer molecular subtypes. Front Oncol. 2021;11: 692170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hazari Y, Bravo-San PJ, Hetz C, Galluzzi L, Kroemer G. Autophagy in hepatic adaptation to stress. J Hepatol. 2020;72(1):183–96.

    Article  CAS  PubMed  Google Scholar 

  21. Qian H, Chao X, Williams J, Fulte S, Li T, Yang L, et al. Autophagy in liver diseases: a review. Mol Aspects Med. 2021;82: 100973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhao H, Liu H, Yang Y, Wang H. The role of autophagy and pyroptosis in liver disorders. Int J Mol Sci. 2022;23(11).

  23. Yazdani HO, Huang H, Tsung A. Autophagy: dual response in the development of hepatocellular carcinoma. Cells-Basel. 2019;8(2).

  24. Wang Y, Huang Y, Liu J, Zhang J, Xu M, You Z, et al. Acetyltransferase GCN5 regulates autophagy and lysosome biogenesis by targeting TFEB. Embo Rep. 2020;21(1): e48335.

    Article  CAS  PubMed  Google Scholar 

  25. Suzuki N, Johmura Y, Wang TW, Migita T, Wu W, Noguchi R, et al. TP53/p53-FBXO22-TFEB controls basal autophagy to govern hormesis. Autophagy. 2021;17(11):3776–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang C, Yang H, Pan L, Zhao G, Zhang R, Zhang T, et al. Hepatitis B virus X protein (HBx) suppresses transcription factor EB (TFEB) resulting in stabilization of integrin beta 1 (ITGB1) in hepatocellular carcinoma cells. Cancers. 2021;13(5).

  27. Lee DH, Goldberg AL. Proteasome inhibitors: valuable new tools for cell biologists. TRENDS CELL BIOL. 1998;8(10):397–403.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The present study was supported by the Hubei Provincial Natural Science Foundation (2020CFB235), the Research Program for Hepatobiliary and Pancreatic Malignancy of Chen-Xiaoping Foundation (CXPJJH12000001-2020340).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shirong Yan or Pei Hu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

The study was approved by Ethical Committee of The Hubei University of Medicine and conducted in accordance with the ethical standards. The animal experiment abided by Laboratory Animal Management Regulations.

Informed consent

Written informed consent was obtained from all the participants.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Wu, Y., Wang, P. et al. LncRNA XXYLT1-AS2 promotes tumor progression via autophagy inhibition through ubiquitinated degradation of TFEB in hepatocellular carcinoma. Clin Transl Oncol 26, 698–708 (2024). https://doi.org/10.1007/s12094-023-03294-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-023-03294-3

Keywords

Navigation