Skip to main content
Log in

MMP11 and MMP17 are potential biomarkers for uterine corpus endometrial carcinoma prognosis

  • RESEARCH ARTICLE
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Background

Matrix metalloproteinases (MMP) are important proteases that degrade the extracellular matrix (ECM) and thus essentially mediate tumor vascularization, metastasis, and invasion. However, their potential roles in uterine corpus endometrial carcinoma (UCEC) are not fully understood.

Patients and methods

The expression, prognostic value, and correlation of UCEC patients with MMP were investigated using data from The Cancer Genome Atlas (TCGA) and other databases. Furthermore, differentially expressed genes (DEGs) were identified and their biological functions and correlations with infiltrating immune cells were analyzed.

Results

A total of 22 MMPs were found to be abnormally expressed in UCEC tumor tissues, and high expression of MMP11 and MMP17 were associated with a better UCEC prognosis. MMP11 and MMP17 were observed to be significantly enriched in tumor tissue ECM and were associated with pathways involving degradation, glycolytic metabolism, and PI3K-Akt signaling. Infiltration of natural killer (NK), mast, and NK CD56bright cells was enhanced in tumor tissues with high MMP11 and MMP17 expression.

Conclusion

MMP11 and MMP17 may affect UCEC prognosis by influencing immune cell infiltration and may be potential UCEC biomarkers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data in this study was obtained from TCGA public database and the acquisition and application method complied with corresponding database guidelines and policies.

References

  1. McEachron J, Zhou N, Spencer C, Shanahan L, Chatterton C, Singhal P, et al. Evaluation of the optimal sequence of adjuvant chemotherapy and radiation therapy in the treatment of advanced endometrial cancer. J Gynecol Oncol. 2020;31(6):e90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Morice P, Leary A, Creutzberg C, Abu-Rustum N, Darai E. Endometrial cancer. Lancet. 2016;387(10023):1094–108.

    Article  PubMed  Google Scholar 

  3. Bassiouni W, Ali MAM, Schulz R. Multifunctional intracellular matrix metalloproteinases: implications in disease. FEBS J. 2021;288(24):7162–82.

    Article  CAS  PubMed  Google Scholar 

  4. Vargová V, Pytliak M, Mechírová V. Matrix metalloproteinases. Exp Suppl. 2012;103:1–33.

    PubMed  Google Scholar 

  5. Roy R, Morad G, Jedinak A, Moses MA. Metalloproteinases and their roles in human cancer. Anat Rec (Hoboken). 2020;303(6):1557–72.

    Article  CAS  PubMed  Google Scholar 

  6. Tao Z, Jie Y, Mingru Z, Changping G, Fan Y, Haifeng W, et al. The Elk1/MMP-9 axis regulates E-cadherin and occludin in ventilator-induced lung injury. Respir Res. 2021;22(1):233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Im NR, Kim B, Jung KY, Baek SK. Matrix metalloproteinase-7 induces E-cadherin cleavage in acid-exposed primary human pharyngeal epithelial cells via the ROS/ERK/c-Jun pathway. J Mol Med (Berl). 2022;100(2):313–22.

    Article  CAS  PubMed  Google Scholar 

  8. Shimoda M, Ohtsuka T, Okada Y, Kanai Y. Stromal metalloproteinases: crucial contributors to the tumor microenvironment. Pathol Int. 2021;71(1):1–14.

    Article  CAS  PubMed  Google Scholar 

  9. Raeeszadeh-Sarmazdeh M, Do LD, Hritz BG. Metalloproteinases and their inhibitors: potential for the development of new therapeutics. Cells. 2020;9(5):1313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Vivian J, Rao AA, Nothaft FA, Ketchum C, Armstrong J, Novak A, et al. Toil enables reproducible, open source, big biomedical data analyses. Nat Biotechnol. 2017;35(4):314–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez JC, et al. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics. 2011;12:77.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16(5):284–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bindea G, Mlecnik B, Tosolini M, Kirilovsky A, Waldner M, Obenauf AC, et al. Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity. 2013;39(4):782–95.

    Article  CAS  PubMed  Google Scholar 

  15. Wang C, Mao C, Lai Y, Cai Z, Chen W. MMP1 3’UTR facilitates the proliferation and migration of human oral squamous cell carcinoma by sponging miR-188-5p to up-regulate SOX4 and CDK4. Mol Cell Biochem. 2021;476(2):785–96.

    Article  CAS  PubMed  Google Scholar 

  16. Zhao S, Yu M. Identification of MMP1 as a potential prognostic biomarker and correlating with immune infiltrates in cervical squamous cell carcinoma. DNA Cell Biol. 2020;39(2):255–72.

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  17. Wang JF, Gong YQ, He YH, Ying WW, Li XS, Zhou XF, et al. High expression of MMP14 is associated with progression and poor short-term prognosis in muscle-invasive bladder cancer. Eur Rev Med Pharmacol Sci. 2020;24(12):6605–15.

    PubMed  Google Scholar 

  18. Claesson-Welsh L. How the matrix metalloproteinase MMP14 contributes to the progression of colorectal cancer. J Clin Invest. 2020;130(3):1093–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ager EI, Kozin SV, Kirkpatrick ND, Seano G, Kodack DP, Askoxylakis V, et al. Blockade of MMP14 activity in murine breast carcinomas: implications for macrophages, vessels, and radiotherapy. J Natl Cancer Inst. 2015;107(4):djv017.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Zheng L, Li D, Xiang X, Tong L, Qi M, Pu J, et al. Methyl jasmonate abolishes the migration, invasion and angiogenesis of gastric cancer cells through down-regulation of matrix metalloproteinase 14. BMC Cancer. 2013;13:74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sun J, Zhang Z, Chen J, Xue M, Pan X. ELTD1 promotes invasion and metastasis by activating MMP2 in colorectal cancer. Int J Biol Sci. 2021;17(12):3048–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liu C, Shen Y, Tan Q. Diagnostic and prognostic values of MMP-9 expression in ovarian cancer: a study based on bioinformatics analysis and meta-analysis. Int J Biol Markers. 2023;38(1):15–24.

    Article  CAS  PubMed  Google Scholar 

  23. Xu DM, Han PH, Chen L, Li TT, Yang XH, Guo R. Knockdown of MMP16 inhibits cell proliferation and invasion in chordoma in vitro. J Biol Regul Homeost Agents. 2020;34(6):2263–70.

    CAS  PubMed  Google Scholar 

  24. Zheng W, Li ZY, Zhao DL, Li XL, Liu R. microRNA-26a directly targeting MMP14 and MMP16 inhibits the cancer cell proliferation, migration and invasion in cutaneous squamous cell carcinoma. Cancer Manag Res. 2020;12:7087–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Eiro N, Cid S, Fernández B, Fraile M, Cernea A, Sánchez R, et al. MMP11 expression in intratumoral inflammatory cells in breast cancer. Histopathology. 2019;75(6):916–30.

    Article  PubMed  Google Scholar 

  26. Liu Y, Gao M, An J, Wang X, Jia Y, Xu J, et al. Dysregulation of MiR-30a-3p/Gastrin enhances tumor growth and invasion throughSTAT3/MMP11 pathway in gastric cancer. Onco Targets Ther. 2020;13:8475–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chen GL, Wang SC, Huang WC, Chang WS, Tsai CW, Li HT, et al. The association of MMP-11 promoter polymorphisms with susceptibility to lung cancer in Taiwan. Anticancer Res. 2019;39(10):5375–80.

    Article  CAS  PubMed  Google Scholar 

  28. Xiao C, Wang Y, Cheng Q, Fan Y. Increased expression of MMP17 predicts poor clinical outcomes in epithelial ovarian cancer patients. Medicine (Baltimore). 2022;101(34): e30279.

    Article  CAS  PubMed  Google Scholar 

  29. Zhuang Y, Li X, Zhan P, Pi G, Wen G. MMP11 promotes the proliferation and progression of breast cancer through stabilizing Smad2 protein. Oncol Rep. 2021;45(4):16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang T, Zhang Y, Bai J, Xue Y, Peng Q. MMP1 and MMP9 are potential prognostic biomarkers and targets for uveal melanoma. BMC Cancer. 2021;21(1):1068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cózar B, Greppi M, Carpentier S, Narni-Mancinelli E, Chiossone L, Vivier E. Tumor-infiltrating natural killer cells. Cancer Discov. 2021;11(1):34–44.

    Article  PubMed  Google Scholar 

  32. Pietropaolo G, Scarno G, Stabile H, Grimaldi A, Gismondi A, Santoni A, et al. NK cell and ILC heterogeneity in colorectal cancer. New perspectives from high dimensional data. Mol Aspects Med. 2021;80:100967.

    Article  CAS  PubMed  Google Scholar 

  33. Cursons J, Souza-Fonseca-Guimaraes F, Foroutan M, Anderson A, Hollande F, Hediyeh-Zadeh S, et al. A gene signature predicting natural killer cell infiltration and improved survival in melanoma patients. Cancer Immunol Res. 2019;7(7):1162–74.

    Article  CAS  PubMed  Google Scholar 

  34. Shi S, Ye L, Yu X, Jin K, Wu W. Focus on mast cells in the tumor microenvironment: current knowledge and future directions. Biochim Biophys Acta Rev Cancer. 2023;1878(1): 188845.

    Article  CAS  PubMed  Google Scholar 

  35. Cruceriu D, Baldasici O, Balacescu O, Berindan-Neagoe I. The dual role of tumor necrosis factor-alpha (TNF-α) in breast cancer: molecular insights and therapeutic approaches. Cell Oncol (Dordr). 2020;43(1):1–18.

    Article  CAS  PubMed  Google Scholar 

  36. Wagner JA, Rosario M, Romee R, Berrien-Elliott MM, Schneider SE, Leong JW, et al. CD56bright NK cells exhibit potent antitumor responses following IL-15 priming. J Clin Invest. 2017;127(11):4042–58.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Michel T, Poli A, Cuapio A, Briquemont B, Iserentant G, Ollert M, Zimmer J. Human CD56bright NK cells: an update. J Immunol. 2016;196(7):2923–31.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Yanhui Zhang participated in the design of this study, and written this papers. Jing Wang and Yuqin Fan participated in the design of this study, and they both performed the statistical analysis. Fangfang Lang and Fengping Fu carried out the study and collected data. Qunying Liu contributed to the study conception and design. Yanhui Zhang and Jing Wang share first authorship.

Corresponding author

Correspondence to Qunying Liu.

Ethics declarations

Conflict of interest

There are no conflicting interests between the authors.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study formal consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Yanhui Zhang and Jing Wang are co-first authors.

Supplementary Information

Below is the link to the electronic supplementary material.

12094_2023_3284_MOESM1_ESM.tif

Supplementary Material Figure 1. ROC curves assessing the efficiency of MMPs expression for distinguishing UCEC tumor tissues from non-tumor tissues validated in the GEO datasets. (A) ROC curves analyses in GSE115810; (B) ROC curves analyses in GSE36389. (TIF 10953 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Wang, J., Fan, Y. et al. MMP11 and MMP17 are potential biomarkers for uterine corpus endometrial carcinoma prognosis. Clin Transl Oncol 26, 653–663 (2024). https://doi.org/10.1007/s12094-023-03284-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-023-03284-5

Keywords

Navigation