Skip to main content

Advertisement

Log in

A gene signature of cancer-associated fibroblasts predicts prognosis and treatment response in bladder cancer

  • RESEARCH ARTICLE
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Objective

Due to the pivotal role cancer-associated fibroblasts (CAFs) play in tumor progression, our study aimed to develop a signature of CAFs-related gene (CRG) to predict the survival outcomes and treatment response of bladder cancer (BLCA).

Methods

The transcriptome data and relevant clinical information about BLCA were collected from publicly available databases, including The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets. Weighted gene co-expression network analysis was utilized to uncover CAFs-associated hub genes, and subsequently, a risk model for survival prognosis was constructed using LASSO-Cox regression. The immune microenvironment, immune infiltration, immunotherapy response, and drug sensitivity were explored using ESTIMATE, CIBERSORT, TIDE, and oncoPredict algorithms. To verify the expression of the CRGs, additional analyses were performed using online databases (HPA, CCLE, TIMER, cBioPortal, and TISCH).

Results

Our study developed a CRG signature and constructed a prognostic model. Significant differences in overall survival were observed between the two risk stratifications. The risk score increased with the infiltration of CAFs and tumor staging progression, while closely correlating with immune checkpoint expression and infiltration of CD8 T cells, follicular helper T cells, regulatory T cells, activated dendritic cells, M0 macrophages, M2 macrophages, and resting mast cells. Furthermore, a higher proportion of patients in the low-risk stratification exhibited responsiveness to immunotherapy, and significant variances in sensitivity to multiple chemotherapy medications were observed between the two risk stratifications.

Conclusion

The construction of the risk model based on the CRG signature offers new avenues for the prognosis evaluation and development of personalized treatment strategies for BLCA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The data to support the finding of this work is available at public online databases (https://portal.gdc.cancer.gov/, https://www.ncbi.nlm.nih.gov/geo/, https://portals.broadinstitute.org/ccle/, https://www.proteinatlas.org/, https://cistrome.shinyapps.io/timer/, https://www.cbioportal.org/, and http://tisch.comp-genomics.org/).

References

  1. Antoni S, Ferlay J, Soerjomataram I, Znaor A, Jemal A, Bray F. Bladder cancer incidence and mortality: a global overview and recent trends. Eur Urol. 2017;71(1):96–108. https://doi.org/10.1016/j.eururo.2016.06.010.

    Article  PubMed  Google Scholar 

  2. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424. https://doi.org/10.3322/caac.21492.

    Article  PubMed  Google Scholar 

  3. Berdik C. Unlocking bladder cancer. Nature. 2017;551(7679):S34–5. https://doi.org/10.1038/551S34a.

    Article  CAS  PubMed  Google Scholar 

  4. Schneider AK, Chevalier MF, Derre L. The multifaceted immune regulation of bladder cancer. Nat Rev Urol. 2019;16(10):613–30. https://doi.org/10.1038/s41585-019-0226-y.

    Article  CAS  PubMed  Google Scholar 

  5. Sarfaty M, Golkaram M, Funt SA, Al-Ahmadie H, Kaplan S, Song F, et al. Novel genetic subtypes of urothelial carcinoma with differential outcomes on immune checkpoint blockade. J Clin Oncol. 2023;41(17):3225–35. https://doi.org/10.1200/jco.22.02144.

    Article  CAS  PubMed  Google Scholar 

  6. Jubber I, Ong S, Bukavina L, Black PC, Compérat E, Kamat AM, et al. Epidemiology of bladder cancer in 2023: a systematic review of risk factors. Eur Urol. 2023. https://doi.org/10.1016/j.eururo.2023.03.029.

    Article  PubMed  Google Scholar 

  7. Baghban R, Roshangar L, Jahanban-Esfahlan R, Seidi K, Ebrahimi-Kalan A, Jaymand M, et al. Tumor microenvironment complexity and therapeutic implications at a glance. Cell Commun Signal. 2020;18(1):59. https://doi.org/10.1186/s12964-020-0530-4.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Xu M, Zhang T, Xia R, Wei Y, Wei X. Targeting the tumor stroma for cancer therapy. Mol Cancer. 2022;21(1):208. https://doi.org/10.1186/s12943-022-01670-1.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Franco OE, Shaw AK, Strand DW, Hayward SW. Cancer associated fibroblasts in cancer pathogenesis. Semin Cell Dev Biol. 2010;21(1):33–9. https://doi.org/10.1016/j.semcdb.2009.10.010.

    Article  CAS  PubMed  Google Scholar 

  10. Kalluri R. The biology and function of fibroblasts in cancer. Nat Rev Cancer. 2016;16(9):582–98. https://doi.org/10.1038/nrc.2016.73.

    Article  CAS  PubMed  Google Scholar 

  11. Alexa A, Baderca F, Lighezan R, Izvernariu D. Myofibroblasts reaction in urothelial carcinomas. Rom J Morphol Embryol. 2009;50(4):639–43.

    PubMed  Google Scholar 

  12. Goulet CR, Champagne A, Bernard G, Vandal D, Chabaud S, Pouliot F, et al. Cancer-associated fibroblasts induce epithelial-mesenchymal transition of bladder cancer cells through paracrine IL-6 signalling. BMC Cancer. 2019;19(1):137. https://doi.org/10.1186/s12885-019-5353-6.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Zhang Y, Luo G, You S, Zhang L, Liang C, Chen X. Exosomal LINC00355 derived from cancer-associated fibroblasts promotes bladder cancer cell proliferation and invasion by regulating miR-15a-5p/HMGA2 axis. Acta Biochim Biophys Sin. 2021;53(6):673–82. https://doi.org/10.1093/abbs/gmab041.

    Article  CAS  PubMed  Google Scholar 

  14. Luo G, Zhang Y, Wu Z, Zhang L, Liang C, Chen X. Exosomal LINC00355 derived from cancer-associated fibroblasts promotes bladder cancer cell resistance to cisplatin by regulating miR-34b-5p/ABCB1 axis. Acta Biochim Biophys Sin. 2021;53(5):558–66. https://doi.org/10.1093/abbs/gmab023.

    Article  CAS  PubMed  Google Scholar 

  15. Zhuang J, Shen L, Li M, Sun J, Hao J, Li J, et al. Cancer-associated fibroblast-derived miR-146a-5p generates a niche that promotes bladder cancer stemness and chemoresistance. Can Res. 2023;83(10):1611–27. https://doi.org/10.1158/0008-5472.Can-22-2213.

    Article  CAS  Google Scholar 

  16. Mezheyeuski A, Segersten U, Leiss LW, Malmstrom PU, Hatina J, Ostman A, et al. Fibroblasts in urothelial bladder cancer define stroma phenotypes that are associated with clinical outcome. Sci Rep. 2020;10(1):281. https://doi.org/10.1038/s41598-019-55013-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Calvete J, Larrinaga G, Errarte P, Martín AM, Dotor A, Esquinas C, et al. The coexpression of fibroblast activation protein (FAP) and basal-type markers (CK 5/6 and CD44) predicts prognosis in high-grade invasive urothelial carcinoma of the bladder. Hum Pathol. 2019;91:61–8. https://doi.org/10.1016/j.humpath.2019.07.002.

    Article  CAS  PubMed  Google Scholar 

  18. Aran D, Hu Z, Butte AJ. xCell: digitally portraying the tissue cellular heterogeneity landscape. Genome Biol. 2017;18(1):220. https://doi.org/10.1186/s13059-017-1349-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Becht E, Giraldo NA, Lacroix L, Buttard B, Elarouci N, Petitprez F, et al. Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression. Genome Biol. 2016;17(1):218. https://doi.org/10.1186/s13059-016-1070-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Racle J, de Jonge K, Baumgaertner P, Speiser DE, Gfeller D. Simultaneous enumeration of cancer and immune cell types from bulk tumor gene expression data. Elife. 2017. https://doi.org/10.7554/eLife.26476.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Jiang P, Gu S, Pan D, Fu J, Sahu A, Hu X, et al. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat Med. 2018;24(10):1550–8. https://doi.org/10.1038/s41591-018-0136-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yoshihara K, Shahmoradgoli M, Martínez E, Vegesna R, Kim H, Torres-Garcia W, et al. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat Commun. 2013;4:2612. https://doi.org/10.1038/ncomms3612.

    Article  CAS  PubMed  Google Scholar 

  23. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008;9:559. https://doi.org/10.1186/1471-2105-9-559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Han C, Liu T, Yin R. Biomarkers for cancer-associated fibroblasts. Biomark Res. 2020;8(1):64. https://doi.org/10.1186/s40364-020-00245-w.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Gascard P, Tlsty TD. Carcinoma-associated fibroblasts: orchestrating the composition of malignancy. Genes Dev. 2016;30(9):1002–19. https://doi.org/10.1101/gad.279737.116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, et al. Robust enumeration of cell subsets from tissue expression profiles. Nat Methods. 2015;12(5):453–7. https://doi.org/10.1038/nmeth.3337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Maeser D, Gruener RF, Huang RS. oncoPredict: an R package for predicting in vivo or cancer patient drug response and biomarkers from cell line screening data. Brief Bioinform. 2021. https://doi.org/10.1093/bib/bbab260.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, et al. The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature. 2012;483(7391):603–7. https://doi.org/10.1038/nature11003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ouyang W, Winsnes CF, Hjelmare M, Cesnik AJ, Åkesson L, Xu H, et al. Analysis of the human protein atlas image classification competition. Nat Methods. 2019;16(12):1254–61. https://doi.org/10.1038/s41592-019-0658-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li T, Fan J, Wang B, Traugh N, Chen Q, Liu JS, et al. TIMER: a web server for comprehensive analysis of tumor-infiltrating immune cells. Can Res. 2017;77(21):e108–10. https://doi.org/10.1158/0008-5472.Can-17-0307.

    Article  CAS  Google Scholar 

  31. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6(269):11. https://doi.org/10.1126/scisignal.2004088.

    Article  CAS  Google Scholar 

  32. Sun D, Wang J, Han Y, Dong X, Ge J, Zheng R, et al. TISCH: a comprehensive web resource enabling interactive single-cell transcriptome visualization of tumor microenvironment. Nucleic Acids Res. 2021;49(D1):D1420–30. https://doi.org/10.1093/nar/gkaa1020.

    Article  CAS  PubMed  Google Scholar 

  33. Chhabra Y, Weeraratna AT. Fibroblasts in cancer: unity in heterogeneity. Cell. 2023;186(8):1580–609. https://doi.org/10.1016/j.cell.2023.03.016.

    Article  CAS  PubMed  Google Scholar 

  34. Kwa MQ, Herum KM, Brakebusch C. Cancer-associated fibroblasts: how do they contribute to metastasis? Clin Exp Metastasis. 2019;36(2):71–86. https://doi.org/10.1007/s10585-019-09959-0.

    Article  CAS  PubMed  Google Scholar 

  35. Zhou Z, Cui D, Sun MH, Huang JL, Deng Z, Han BM, et al. CAFs-derived MFAP5 promotes bladder cancer malignant behavior through NOTCH2/HEY1 signaling. FASEB J. 2020;34(6):7970–88. https://doi.org/10.1096/fj.201902659R.

    Article  CAS  PubMed  Google Scholar 

  36. Long X, Xiong W, Zeng X, Qi L, Cai Y, Mo M, et al. Cancer-associated fibroblasts promote cisplatin resistance in bladder cancer cells by increasing IGF-1/ERβ/Bcl-2 signalling. Cell Death Dis. 2019;10(5):375. https://doi.org/10.1038/s41419-019-1581-6.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ma Z, Li X, Mao Y, Wei C, Huang Z, Li G, et al. Interferon-dependent SLC14A1(+) cancer-associated fibroblasts promote cancer stemness via WNT5A in bladder cancer. Cancer Cell. 2022;40(12):1550-65.e7. https://doi.org/10.1016/j.ccell.2022.11.005.

    Article  CAS  PubMed  Google Scholar 

  38. Tao Y, Li X, Zhang Y, He L, Lu Q, Wang Y, et al. TP53-related signature for predicting prognosis and tumor microenvironment characteristics in bladder cancer: A multi-omics study. Front Genet. 2022;13:1057302. https://doi.org/10.3389/fgene.2022.1057302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Huang W, Zhu L, Huang H, Li Y, Wang G, Zhang C. IGF2BP3 overexpression predicts poor prognosis and correlates with immune infiltration in bladder cancer. BMC Cancer. 2023;23(1):116. https://doi.org/10.1186/s12885-022-10353-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Marneros AG, Olsen BR. Physiological role of collagen XVIII and endostatin. FASEB J. 2005;19(7):716–28. https://doi.org/10.1096/fj.04-2134rev.

    Article  CAS  PubMed  Google Scholar 

  41. Dyrskjot L, Reinert T, Novoradovsky A, Zuiverloon TC, Beukers W, Zwarthoff E, et al. Analysis of molecular intra-patient variation and delineation of a prognostic 12-gene signature in non-muscle invasive bladder cancer; technology transfer from microarrays to PCR. Br J Cancer. 2012;107(8):1392–8. https://doi.org/10.1038/bjc.2012.412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhu S, Si ML, Wu H, Mo YY. MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). J Biol Chem. 2007;282(19):14328–36. https://doi.org/10.1074/jbc.M611393200.

    Article  CAS  PubMed  Google Scholar 

  43. Zhang Y, Liu Z, Yang X, Lu W, Chen Y, Lin Y, et al. H3K27 acetylation activated-COL6A1 promotes osteosarcoma lung metastasis by repressing STAT1 and activating pulmonary cancer-associated fibroblasts. Theranostics. 2021;11(3):1473–92. https://doi.org/10.7150/thno.51245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wei Z, Chen L, Meng L, Han W, Huang L, Xu A. LncRNA HOTAIR promotes the growth and metastasis of gastric cancer by sponging miR-1277-5p and upregulating COL5A1. Gastric Cancer. 2020;23(6):1018–32. https://doi.org/10.1007/s10120-020-01091-3.

    Article  CAS  PubMed  Google Scholar 

  45. Zhang J, Zhang J, Wang F, Xu X, Li X, Guan W, et al. Overexpressed COL5A1 is correlated with tumor progression, paclitaxel resistance, and tumor-infiltrating immune cells in ovarian cancer. J Cell Physiol. 2021;236(10):6907–19. https://doi.org/10.1002/jcp.30350.

    Article  CAS  PubMed  Google Scholar 

  46. Dong C, Zhao Y, Yang S, Jiao X. LINC00173 blocks GATA6-mediated transcription of COL5A1 to affect malignant development of oral squamous cell carcinoma. J Oral Pathol Med. 2023. https://doi.org/10.1111/jop.13425.

    Article  PubMed  Google Scholar 

  47. Martinez-Lostao L, Anel A, Pardo J. How do cytotoxic lymphocytes kill cancer cells? Clin Cancer Res. 2015;21(22):5047–56. https://doi.org/10.1158/1078-0432.CCR-15-0685.

    Article  CAS  PubMed  Google Scholar 

  48. Wang L, Saci A, Szabo PM, Chasalow SD, Castillo-Martin M, Domingo-Domenech J, et al. EMT- and stroma-related gene expression and resistance to PD-1 blockade in urothelial cancer. Nat Commun. 2018;9(1):3503. https://doi.org/10.1038/s41467-018-05992-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Baumjohann D, Brossart P. T follicular helper cells: linking cancer immunotherapy and immune-related adverse events. J ImmunoTher Cancer. 2021. https://doi.org/10.1136/jitc-2021-002588.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Cui C, Wang J, Fagerberg E, Chen PM, Connolly KA, Damo M, et al. Neoantigen-driven B cell and CD4 T follicular helper cell collaboration promotes anti-tumor CD8 T cell responses. Cell. 2021;184(25):6101-18 e13. https://doi.org/10.1016/j.cell.2021.11.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gu-Trantien C, Loi S, Garaud S, Equeter C, Libin M, de Wind A, et al. CD4+ follicular helper T cell infiltration predicts breast cancer survival. J Clin Investig. 2013;123(7):2873–92. https://doi.org/10.1172/jci67428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bosch NC, Martin LM, Voskens CJ, Berking C, Seliger B, Schuler G, et al. A Chimeric IL-15/IL-15Ralpha molecule expressed on NFkappaB-activated dendritic cells supports their capability to activate natural killer cells. Int J Mol Sci. 2021;22(19):10227. https://doi.org/10.3390/ijms221910227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Fridman WH, Zitvogel L, Sautes-Fridman C, Kroemer G. The immune contexture in cancer prognosis and treatment. Nat Rev Clin Oncol. 2017;14(12):717–34. https://doi.org/10.1038/nrclinonc.2017.101.

    Article  CAS  PubMed  Google Scholar 

  54. Liu Z, Zhu Y, Xu L, Zhang J, Xie H, Fu H, et al. Tumor stroma-infiltrating mast cells predict prognosis and adjuvant chemotherapeutic benefits in patients with muscle invasive bladder cancer. Oncoimmunology. 2018;7(9):e1474317. https://doi.org/10.1080/2162402X.2018.1474317.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Zhu H, Chen H, Wang J, Zhou L, Liu S. Collagen stiffness promoted non-muscle-invasive bladder cancer progression to muscle-invasive bladder cancer. Onco Targets Ther. 2019;12:3441–57. https://doi.org/10.2147/OTT.S194568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kong DB, Chen F, Sima N. Focal adhesion kinases crucially regulate TGFbeta-induced migration and invasion of bladder cancer cells via Src kinase and E-cadherin. Onco Targets Ther. 2017;10:1783–92. https://doi.org/10.2147/OTT.S122463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Guangxi Key Research and Development Project (Grant No. Guike AB21196022) and the Major Project of Guangxi Innovation Driven (AA18118016).

Author information

Authors and Affiliations

Authors

Contributions

ZM and BZ: conceived and led the study. XC and CL: responsible for data collection, interpretation, and analysis, and wrote the manuscript. XZ: critically revised the manuscript. All authors contributed to the article and approved the submitted version.

Corresponding authors

Correspondence to Bei Zhang or Zengnan Mo.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose. The authors declare that they have no conflict of interest.

Ethical approval

The manuscript does not contain clinical studies or patient data.

Informed consent

For this type of study formal consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Zengnan Mo is the primary corresponding author.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 20 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Liao, C., Zou, X. et al. A gene signature of cancer-associated fibroblasts predicts prognosis and treatment response in bladder cancer. Clin Transl Oncol 26, 477–495 (2024). https://doi.org/10.1007/s12094-023-03270-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-023-03270-x

Keywords

Navigation