Skip to main content
Log in

Upregulated PPP1R14B is connected to cancer progression and immune infiltration in kidney renal clear cell carcinoma

  • RESEARCH ARTICLE
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Background

Protein phosphatase 1 regulatory subunit 14B (PPP1R14B) is an oncogenic gene found in a variety of tumors, but its role in the prognosis and development of kidney renal clear cell carcinoma (KIRC) remains unknown. Our study aimed to determine whether PPP1R14B could be a prognostic biomarker for KIRC and its role in the development of KIRC.

Methods

In this work, we used The Cancer Genome Atlas (TCGA) database to explore the expression of PPP1R14B in tumor tissues, its relationship with the prognosis of tumor patients, and its role in tumor occurrence and development. We validated our findings using the International Cancer Genome Consortium (ICGC) cohort, our clinical samples, and in vitro experiments.

Results

PPP1R14B was upregulated in KIRC compared to adjacent normal tissue. Moreover, multivariate analysis revealed that upregulated PPP1R14B expression was an independent risk factor for KIRC progression. High-PPP1R14B groups had shorter overall survival (OS) and disease-free survival (DFS) in TCGA and ICGC cohorts. We used Cell Counting Kit-8 (CCK8) and scratch wound healing assay to explore the proliferation and migration of KIRC cells following PPP1R14B knockdown. Our results indicated that PPP1R14B knockdown significantly reduced the proliferation and migration of KIRC cells in vitro. We also explored the possible cellular mechanisms of PPP1R14B through the Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene ontology (GO) analysis, and TISIDB analysis. The function enrich analysis revealed that PPP1R14B-related genes were mainly enriched in purine metabolism and the macromolecule catabolic process. PPP1R14B expression was associated with tumor-infiltrating immune cells (TIICs) in the TCGA cohort, and the results of single-cell RNA-seq (scRNA) further demonstrated that PPP1R14B expression was associated with the enhanced infiltration of CD8 + T lymphocytes.

Conclusion

PPP1R14B may serve as a prognostic biomarker in KIRC, affect purine metabolism, activate immune infiltration, and promote KIRC cell migration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets of this study were from UCSC Xena database (http://xena.ucsc.edu/), the ICGC database (https://dcc.icgc.org/), and GEO database. The author will provide the original data of RT-qPCR, CCK-8, and scratch wound healing assay to any qualified researcher without excessive retention.

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a Cancer J Clin. 2021;71(3):209–49. https://doi.org/10.3322/caac.21660.

    Article  Google Scholar 

  2. Bukavina L, Bensalah K, Bray F, Carlo M, Challacombe B, Karam JA, et al. Epidemiology of renal cell carcinoma: 2022 update. Eur Urol. 2022;82(5):529–42. https://doi.org/10.1016/j.eururo.2022.08.019.

    Article  PubMed  Google Scholar 

  3. Moch H, Cubilla AL, Humphrey PA, Reuter VE, Ulbright TM. The 2016 WHO classification of tumours of the urinary system and male genital organs-part a: renal, penile, and testicular tumours. Eur Urol. 2016;70(1):93–105. https://doi.org/10.1016/j.eururo.2016.02.029.

    Article  PubMed  Google Scholar 

  4. Ballarin R, Spaggiari M, Cautero N, De Ruvo N, Montalti R, Longo C, et al. Pancreatic metastases from renal cell carcinoma: the state of the art. World J Gastroenterol. 2011;17(43):4747–56. https://doi.org/10.3748/wjg.v17.i43.4747.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Zheng J, Wang L, Peng Z, Yang Y, Feng D, He J. Low level of PDZ domain containing 1 (PDZK1) predicts poor clinical outcome in patients with clear cell renal cell carcinoma. EBioMed. 2017;15:62–72. https://doi.org/10.1016/j.ebiom.2016.12.003.

    Article  Google Scholar 

  6. Tamayo P, Cho YJ, Tsherniak A, Greulich H, Ambrogio L, Schouten-van Meeteren N, et al. Predicting relapse in patients with medulloblastoma by integrating evidence from clinical and genomic features. J Clin Oncol: Off J Am Soc Clin Oncol. 2011;29(11):1415–23. https://doi.org/10.1200/jco.2010.28.1675.

    Article  Google Scholar 

  7. Vuong L, Kotecha RR, Voss MH, Hakimi AA. Tumor microenvironment dynamics in clear-cell renal cell carcinoma. Cancer Discov. 2019;9(10):1349–57. https://doi.org/10.1158/2159-8290.Cd-19-0499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen DS, Mellman I. Elements of cancer immunity and the cancer-immune set point. Nature. 2017;541(7637):321–30. https://doi.org/10.1038/nature21349.

    Article  CAS  PubMed  Google Scholar 

  9. Lalani AA, McGregor BA, Albiges L, Choueiri TK, Motzer R, Powles T, et al. Systemic treatment of metastatic clear cell renal cell carcinoma in 2018: current paradigms, use of immunotherapy, and future directions. Eur Urol. 2019;75(1):100–10. https://doi.org/10.1016/j.eururo.2018.10.010.

    Article  PubMed  Google Scholar 

  10. Hegde PS, Chen DS. Top 10 challenges in cancer immunotherapy. Immunity. 2020;52(1):17–35. https://doi.org/10.1016/j.immuni.2019.12.011.

    Article  CAS  PubMed  Google Scholar 

  11. Giraldo NA, Becht E, Pagès F, Skliris G, Verkarre V, Vano Y, et al. Orchestration and prognostic significance of immune checkpoints in the microenvironment of primary and metastatic renal cell cancer. Clinical Cancer Res: Official J Am Assoc Cancer Res. 2015;21(13):3031–40. https://doi.org/10.1158/1078-0432.Ccr-14-2926.

    Article  CAS  Google Scholar 

  12. Wang Z, Jensen MA, Zenklusen JC. A Practical Guide to The cancer genome atlas (TCGA). Methods Mol Biol (Clifton, NJ). 2016;1418:111–41. https://doi.org/10.1007/978-1-4939-3578-9_6.

    Article  Google Scholar 

  13. Deng M, Brägelmann J, Schultze JL, Perner S. Web-TCGA: an online platform for integrated analysis of molecular cancer data sets. BMC Bioinform. 2016;17:72. https://doi.org/10.1186/s12859-016-0917-9.

    Article  CAS  Google Scholar 

  14. Lagercrantz J, Carson E, Larsson C, Nordenskjöld M, Weber G. Isolation and characterization of a novel gene close to the human phosphoinositide-specific phospholipase C beta 3 gene on chromosomal region 11q13. Genomics. 1996;31(3):380–4. https://doi.org/10.1006/geno.1996.0063.

    Article  CAS  PubMed  Google Scholar 

  15. Eto M, Karginov A, Brautigan DL. A novel phosphoprotein inhibitor of protein type-1 phosphatase holoenzymes. Biochemistry. 1999;38(51):16952–7. https://doi.org/10.1021/bi9920300.

    Article  CAS  PubMed  Google Scholar 

  16. Elfring LK, Axton JM, Fenger DD, Page AW, Carminati JL, Orr-Weaver TL. Drosophila PLUTONIUM protein is a specialized cell cycle regulator required at the onset of embryogenesis. Mol Biol Cell. 1997;8(4):583–93. https://doi.org/10.1091/mbc.8.4.583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Worley MJ Jr, Liu S, Hua Y, Kwok JS, Samuel A, Hou L, et al. (2015) Molecular changes in endometriosis-associated ovarian clear cell carcinoma. Eur J Cancer (Oxford England 1990). 1990;51(13):1831–42. https://doi.org/10.1016/j.ejca.2015.05.011.

    Article  CAS  Google Scholar 

  18. Liao L, Zhang YL, Deng L, Chen C, Ma XY, Andriani L, et al. Protein phosphatase 1 subunit PPP1R14B stabilizes STMN1 to promote progression and paclitaxel resistance in triple-negative breast cancer. Can Res. 2023;83(3):471–84. https://doi.org/10.1158/0008-5472.Can-22-2709.

    Article  CAS  Google Scholar 

  19. Xiang N, Chen T, Zhao X, Zhao M. In vitro assessment of roles of PPP1R14B in cervical and endometrial cancer. Tissue cell. 2022;77:101845. https://doi.org/10.1016/j.tice.2022.101845.

    Article  CAS  PubMed  Google Scholar 

  20. Deng M, Peng L, Li J, Liu X, Xia X, Li G. PPP1R14B is a prognostic and immunological biomarker in pan-cancer. Front Genet. 2021;12:763561. https://doi.org/10.3389/fgene.2021.763561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mosquera Orgueira A, Antelo Rodríguez B, Díaz Arias J, Díaz Varela N, Bello López JL. A three-gene expression signature identifies a cluster of patients with short survival in chronic lymphocytic leukemia. J Oncol. 2019;2019:9453539. https://doi.org/10.1155/2019/9453539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Su C, Lv Y, Lu W, Yu Z, Ye Y, Guo B, et al. Single-cell RNA sequencing in multiple pathologic types of renal cell carcinoma revealed novel potential tumor-specific markers. Front Oncol. 2021;11:719564. https://doi.org/10.3389/fonc.2021.719564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wozniak MB, Le Calvez-Kelm F, Abedi-Ardekani B, Byrnes G, Durand G, Carreira C, et al. Integrative genome-wide gene expression profiling of clear cell renal cell carcinoma in Czech Republic and in the United States. PloS one. 2013;8(3): e57886. https://doi.org/10.1371/journal.pone.0057886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. von Roemeling CA, Radisky DC, Marlow LA, Cooper SJ, Grebe SK, Anastasiadis PZ, et al. Neuronal pentraxin 2 supports clear cell renal cell carcinoma by activating the AMPA-selective glutamate receptor-4. Can Res. 2014;74(17):4796–810. https://doi.org/10.1158/0008-5472.Can-14-0210.

    Article  Google Scholar 

  25. Ru B, Wong CN, Tong Y, Zhong JY, Zhong SSW, Wu WC, et al. TISIDB: an integrated repository portal for tumor-immune system interactions. Bioinformatics (Oxford, England). 2019;35(20):4200–2. https://doi.org/10.1093/bioinformatics/btz210.

    Article  CAS  PubMed  Google Scholar 

  26. Townsend MH, Anderson MD, Weagel EG, Velazquez EJ, Weber KS, Robison RA, et al. Non-small-cell lung cancer cell lines A549 and NCI-H460 express hypoxanthine guanine phosphoribosyltransferase on the plasma membrane. Onco Targets Ther. 2017;10:1921–32. https://doi.org/10.2147/ott.S128416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. de Groot M, Iyer A, Zurolo E, Anink J, Heimans JJ, Boison D, et al. Overexpression of ADK in human astrocytic tumors and peritumoral tissue is related to tumor-associated epilepsy. Epilepsia. 2012;53(1):58–66. https://doi.org/10.1111/j.1528-1167.2011.03306.x.

    Article  CAS  PubMed  Google Scholar 

  28. Wang T, Gnanaprakasam JNR, Chen X, Kang S, Xu X, Sun H, et al. Inosine is an alternative carbon source for CD8(+)-T-cell function under glucose restriction. Nat Metab. 2020;2(7):635–47. https://doi.org/10.1038/s42255-020-0219-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Anker J, Miller J, Taylor N, Kyprianou N, Tsao CK. From bench to bedside: how the tumor microenvironment is impacting the future of immunotherapy for renal cell carcinoma. Cells. 2021. https://doi.org/10.3390/cells10113231.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Barata PC, Rini BI. Treatment of renal cell carcinoma: current status and future directions. CA: Cancer J Clin. 2017;67(6):507–24. https://doi.org/10.3322/caac.21411.

    Article  PubMed  Google Scholar 

  31. Chehrazi-Raffle A, Meza L, Alcantara M, Dizman N, Bergerot P, Salgia N, et al. Circulating cytokines associated with clinical response to systemic therapy in metastatic renal cell carcinoma. J Immunother Cancer. 2021. https://doi.org/10.1136/jitc-2020-002009.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Zhao M, Shao Y, Xu J, Zhang B, Li C, Gong J. LINC00466 impacts cell proliferation, metastasis and sensitivity to temozolomide of glioma by sponging miR-137 to regulate PPP1R14B expression. Onco Targets Ther. 2021;14:1147–59. https://doi.org/10.2147/ott.S273264.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Shi Y. Serine/threonine phosphatases: mechanism through structure. Cell. 2009;139(3):468–84. https://doi.org/10.1016/j.cell.2009.10.006.

    Article  CAS  PubMed  Google Scholar 

  34. Felgueiras J, Jerónimo C, Fardilha M. Protein phosphatase 1 in tumorigenesis: is it worth a closer look? Biochim Biophys Acta Rev Cancer. 2020;1874(2):188433. https://doi.org/10.1016/j.bbcan.2020.188433.

    Article  CAS  PubMed  Google Scholar 

  35. Chen MJ, Dixon JE, Manning G. Genomics and evolution of protein phosphatases. Sci Signal. 2017. https://doi.org/10.1126/scisignal.aag1796.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Xiaoxing Y. Research progress on the relationship between purine nucleotide metabolism and malignant tumors. Oncol Prog. 2019;17(21):2498–501 ((in Chinese)).

    Google Scholar 

  37. Rampazzo C, Tozzi MG, Dumontet C, Jordheim LP. The druggability of intracellular nucleotide-degrading enzymes. Cancer Chemother Pharmacol. 2016;77(5):883–93. https://doi.org/10.1007/s00280-015-2921-6.

    Article  CAS  PubMed  Google Scholar 

  38. Ames BN, Cathcart R, Schwiers E, Hochstein P. Uric acid provides an antioxidant defense in humans against oxidant- and radical-caused aging and cancer: a hypothesis. Proc Natl Acad Sci USA. 1981;78(11):6858–62. https://doi.org/10.1073/pnas.78.11.6858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fini MA, Elias A, Johnson RJ, Wright RM. Contribution of uric acid to cancer risk, recurrence, and mortality. Clin Transl Med. 2012;1(1):16. https://doi.org/10.1186/2001-1326-1-16.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Zhang L, Jiang L, Yu L, Li Q, Tian X, He J, et al. Inhibition of UBA6 by inosine augments tumour immunogenicity and responses. Nat Commun. 2022;13(1):5413. https://doi.org/10.1038/s41467-022-33116-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mager LF, Burkhard R, Pett N, Cooke NCA, Brown K, Ramay H, et al. Microbiome-derived inosine modulates response to checkpoint inhibitor immunotherapy. Science (New York, NY). 2020;369(6510):1481–9. https://doi.org/10.1126/science.abc3421.

    Article  CAS  Google Scholar 

  42. Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle. Immunity. 2013;39(1):1–10. https://doi.org/10.1016/j.immuni.2013.07.012.

    Article  CAS  PubMed  Google Scholar 

  43. Fridman WH, Pagès F, Sautès-Fridman C, Galon J. The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer. 2012;12(4):298–306. https://doi.org/10.1038/nrc3245.

    Article  CAS  PubMed  Google Scholar 

  44. Dai S, Zeng H, Liu Z, Jin K, Jiang W, Wang Z, et al. Intratumoral CXCL13(+)CD8(+)T cell infiltration determines poor clinical outcomes and immunoevasive contexture in patients with clear cell renal cell carcinoma. J Immunother Cancer. 2021. https://doi.org/10.1136/jitc-2020-001823.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Remark R, Alifano M, Cremer I, Lupo A, Dieu-Nosjean MC, Riquet M, et al. Characteristics and clinical impacts of the immune environments in colorectal and renal cell carcinoma lung metastases: influence of tumor origin. Clin Cancer Res: Off J Am Assoc Cancer Res. 2013;19(15):4079–91. https://doi.org/10.1158/1078-0432.Ccr-12-3847.

    Article  CAS  Google Scholar 

  46. Bruni D, Angell HK, Galon J. The immune contexture and immunoscore in cancer prognosis and therapeutic efficacy. Nat Rev Cancer. 2020;20(11):662–80. https://doi.org/10.1038/s41568-020-0285-7.

    Article  CAS  PubMed  Google Scholar 

  47. Menard LC, Fischer P, Kakrecha B, Linsley PS, Wambre E, Liu MC, et al. Renal cell carcinoma (RCC) tumors display large expansion of double positive (DP) CD4+CD8+ T cells with expression of exhaustion markers. Front Immunol. 2018;9:2728. https://doi.org/10.3389/fimmu.2018.02728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhang S, Zhang E, Long J, Hu Z, Peng J, Liu L, et al. Immune infiltration in renal cell carcinoma. Cancer Sci. 2019;110(5):1564–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Home for Researchers editorial team (www.home-for-researchers.com) for language editing service.

Funding

This work was supported by Guangxi Key Research and Development Project (Grant No. Guike AB21196022) and Guangxi Science and Technology Major Project (Grant No. Guike AA22412).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Houbao Huang or Zengnan Mo.

Ethics declarations

Conflict of interst

The authors declare no conflict of interest.

Ethical approval

The Ethics Committee of The Second Affiliated Hospital of Guangxi Medical University approved the work (Approval Number: 2021–163 KY(0365)).

Informed consent

The study participants signed the informed consent forms.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 7370 KB)

Supplementary file2 (PDF 4180 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, L., Mi, J., Zhang, J. et al. Upregulated PPP1R14B is connected to cancer progression and immune infiltration in kidney renal clear cell carcinoma. Clin Transl Oncol 26, 119–135 (2024). https://doi.org/10.1007/s12094-023-03228-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-023-03228-z

Keywords

Navigation