Skip to main content

Advertisement

Log in

CISD2 promotes lung squamous carcinoma cell migration and invasion via the TGF-β1-induced Smad2/3 signaling pathway

  • RESEARCH ARTICLE
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Background

Although aberrant expression of CDGSH iron sulfur domain 2 (CISD2) contributes to the tumorigenesis and progression of numerous human cancers, the biological function of CISD2 and its specific prognostic value in lung squamous cell carcinoma (LUSC) have yet to be comprehensively explored. The current study aimed to elucidate the role of CISD2 in LUSC as well as the underlying molecular mechanisms.

Methods

Immunohistochemistry was conducted to detect the protein expression of CISD2 and analyze whether high expression of CISD2 affects the overall survival (OS) of LUSC patients. Cell proliferation, colony formation, wound healing and Transwell invasion assays were performed to clarify whether CISD2 contributes to LUSC cell proliferation and disease progression. Quantitative real-time reverse transcription-PCR and western blot assays were used to detect the levels of transcription factors and key epithelial-mesenchymal transition (EMT)-related markers in LUSC cells after CISD2 knockdown and overexpression to determine whether CISD2 regulates transforming growth factor-beta (TGF-β)-induced EMT in LUSC.

Results

Immunohistochemistry of human tissue microarrays containing 90 pairs of adjacent and cancerous tissues revealed that CISD2 is considerably overexpressed in LUSC and strongly linked to poor OS. Functional experiments suggested that silencing endogenous CISD2 inhibited the growth, colony formation, migration, and invasion of H2170 and H226 cell lines. Exogenous overexpression of CISD2 facilitated these phenotypes in SK-MES-1 and H2170 cells. Furthermore, CISD2 promoted EMT progression by increasing the expression of mesenchymal markers (N-cadherin, vimentin, Snail, and Slug) as well as SMAD2/3 and reducing the expression of the epithelial marker E-cadherin. Mechanistically, our studies provide the first evidence that CISD2 can promote EMT by enhancing TGF-β1-induced Smad2/3 expression in LUSC cells.

Conclusion

In conclusion, our research illustrates that CISD2 is highly expressed in LUSC and may facilitate LUSC proliferation and metastasis. Thus, CISD2 may serve as an independent prognostic marker and possible treatment target for LUSC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets produced for this work can be obtained from the corresponding author (QW) upon request.

Abbreviations

CISD2:

CDGSH iron sulfur domain 2

TGF-β:

Transforming growth factor-beta

NSCLC:

Non-small cell lung cancer

LUSC:

Lung squamous cell carcinoma

EMT:

Epithelial-mesenchymal transition

OS:

Overall survival

KD:

Knockdown

OE:

Overexpression

qRT‒PCR:

Quantitative real-time reverse transcription-PCR

WB:

Western blotting

IHC:

Immunohistochemistry

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.

    Article  PubMed  Google Scholar 

  2. Azzoli CG, Temin S, Aliff T, Baker S Jr, Brahmer J, Johnson DH, et al. 2011 Focused update of 2009 American society of clinical oncology clinical practice guideline update on chemotherapy for stage IV non-small-cell lung cancer. J Clin Oncol. 2011;29(28):3825–31.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Vinas F, Ben Hassen I, Jabot L, Monnet I, Chouaid C. Delays for diagnosis and treatment of lung cancers: a systematic review. Clin Respir J. 2016;10(3):267–71.

    Article  PubMed  Google Scholar 

  4. Baxevanos P, Mountzios G. Novel chemotherapy regimens for advanced lung cancer: have we reached a plateau? Ann Transl Med. 2018;6(8):139.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Perez-Moreno P, Brambilla E, Thomas R, Soria JC. Squamous cell carcinoma of the lung: molecular subtypes and therapeutic opportunities. Clin Cancer Res. 2012;18(9):2443–51.

    Article  CAS  PubMed  Google Scholar 

  6. Chen YF, Kao CH, Chen YT, Wang CH, Wu CY, Tsai CY, et al. Cisd2 deficiency drives premature aging and causes mitochondria-mediated defects in mice. Genes Dev. 2009;23(10):1183–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Puca AA, Daly MJ, Brewster SJ, Matise TC, Barrett J, Shea-Drinkwater M, et al. A genome-wide scan for linkage to human exceptional longevity identifies a locus on chromosome 4. Proc Natl Acad Sci U S A. 2001;98(18):10505–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wiley SE, Murphy AN, Ross SA, van der Geer P, Dixon JE. MitoNEET is an iron-containing outer mitochondrial membrane protein that regulates oxidative capacity. Proc Natl Acad Sci U S A. 2007;104(13):5318–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang CH, Chen YF, Wu CY, Wu PC, Huang YL, Kao CH, et al. Cisd2 modulates the differentiation and functioning of adipocytes by regulating intracellular Ca2+ homeostasis. Hum Mol Genet. 2014;23(18):4770–85.

    Article  CAS  PubMed  Google Scholar 

  10. Mittler R, Darash-Yahana M, Sohn YS, Bai F, Song L, Cabantchik IZ, et al. NEET proteins: a new link between iron metabolism, reactive oxygen species, and cancer. Antioxid Redox Signal. 2019;30(8):1083–95.

    Article  CAS  PubMed  Google Scholar 

  11. Chen YF, Wu CY, Kirby R, Kao CH, Tsai TF. A role for the CISD2 gene in lifespan control and human disease. Ann N Y Acad Sci. 2010;1201:58–64.

    Article  CAS  PubMed  Google Scholar 

  12. Liu L, Xia M, Wang J, Zhang W, Zhang Y, He M. CISD2 expression is a novel marker correlating with pelvic lymph node metastasis and prognosis in patients with early-stage cervical cancer. Med Oncol. 2014;31(9):183.

    Article  Google Scholar 

  13. Chen B, Shen S, Wu J, Hua Y, Kuang M, Li S, et al. CISD2 associated with proliferation indicates negative prognosis in patients with hepatocellular carcinoma. Int J Clin Exp Pathol. 2015;8(10):13725–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang L, Ouyang F, Liu X, Wu S, Wu HM, Xu Y, et al. Overexpressed CISD2 has prognostic value in human gastric cancer and promotes gastric cancer cell proliferation and tumorigenesis via AKT signaling pathway. Oncotarget. 2016;7(4):3791–805.

    Article  PubMed  Google Scholar 

  15. Li SM, Chen CH, Chen YW, Yen YC, Fang WT, Tsai FY, et al. Upregulation of CISD2 augments ROS homeostasis and contributes to tumorigenesis and poor prognosis of lung adenocarcinoma. Sci Rep. 2017;7(1):11893.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Yang Y, Bai YS, Wang Q. CDGSH Iron Sulfur domain 2 activates proliferation and EMT of pancreatic cancer cells via Wnt/β-catenin pathway and has prognostic value in human pancreatic cancer. Oncol Res. 2017;25(4):605–15.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Zhu QQ, Tian L, Li DL, Wu ZH, He YY, Zhang HK. Elevated CISD2 expression predicts poor diagnosis and promotes invasion and migration of prostate cancer cells. Eur Rev Med Pharmacol Sci. 2020;24(12):6597–604.

    PubMed  Google Scholar 

  18. Holt SH, Darash-Yahana M, Sohn YS, Song L, Karmi O, Tamir S, et al. Activation of apoptosis in NAF-1-deficient human epithelial breast cancer cells. J Cell Sci. 2016;129(1):155–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Lu W, Kang Y. Epithelial-mesenchymal plasticity in cancer progression and metastasis. Dev Cell. 2019;49(3):361–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Xu J, Lamouille S, Derynck R. TGF-beta-induced epithelial to mesenchymal transition. Cell Res. 2009;19(2):156–72.

    Article  CAS  PubMed  Google Scholar 

  21. Hao Y, Baker D, Ten Dijke P. TGF-beta-mediated epithelial-mesenchymal transition and cancer metastasis. Int J Mol Sci. 2019;20(11):2767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Thuault S, Valcourt U, Petersen M, Manfioletti G, Heldin CH, Moustakas A. Transforming growth factor-beta employs HMGA2 to elicit epithelial-mesenchymal transition. J Cell Biol. 2006;174(2):175–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yang H, Wang L, Zhao J, Chen Y, Lei Z, Liu X, et al. TGF-beta-activated SMAD3/4 complex transcriptionally upregulates N-cadherin expression in non-small cell lung cancer. Lung Cancer. 2015;87(3):249–57.

    Article  PubMed  Google Scholar 

  24. Tong X, Wang S, Lei Z, Li C, Zhang C, Su Z, et al. MYOCD and SMAD3/SMAD4 form a positive feedback loop and drive TGF-beta-induced epithelial-mesenchymal transition in non-small cell lung cancer. Oncogene. 2020;39(14):2890–904.

    Article  CAS  PubMed  Google Scholar 

  25. Dennler S, Pendaries V, Tacheau C, Costas MA, Mauviel A, Verrecchia F. The steroid receptor co-activator-1 (SRC-1) potentiates TGF-beta/Smad signaling: role of p300/CBP. Oncogene. 2005;24(11):1936–45.

    Article  CAS  PubMed  Google Scholar 

  26. Zhao YY, Wu Q, Wu ZB, Zhang JJ, Zhu LC, Yang Y, et al. Microwave hyperthermia promotes caspase3-dependent apoptosis and induces G2/M checkpoint arrest via the ATM pathway in nonsmall cell lung cancer cells. Int J Oncol. 2018;53(2):539–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Hou J, Aerts J, den Hamer B, van Ijcken W, den Bakker M, Riegman P, et al. Gene expression-based classification of non-small cell lung carcinomas and survival prediction. PLoS ONE. 2010;5(4): e10312.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Son H, Moon A. Epithelial-mesenchymal transition and cell Invasion. Toxicol Res. 2010;26(4):245–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shen ZQ, Huang YL, Teng YC, Wang TW, Kao CH, Yeh CH, et al. CISD2 maintains cellular homeostasis. Biochim Biophys Acta Mol Cell Res. 2021;1868(4): 118954.

    Article  CAS  PubMed  Google Scholar 

  30. Shen ZQ, Chen YF, Chen JR, Jou YS, Wu PC, Kao CH, et al. CISD2 Haploinsufficiency disrupts calcium homeostasis, causes nonalcoholic fatty liver disease, and promotes hepatocellular carcinoma. Cell Rep. 2017;21(8):2198–211.

    Article  CAS  PubMed  Google Scholar 

  31. Shen ZQ, Huang YL, Tsai TF. Cisd2 haploinsufficiency: a driving force for hepatocellular carcinoma. Mol Cell Oncol. 2018;5(3): e1441627.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Xifeng Xu for providing CISD2 KD plasmid information.

Funding

This study was funded by the Zhejiang Provincial Natural Science Foundation of China (Grant no. Q23H160038), the National Natural Science Foundation of China (Grant no. 81803042) and the Medical and Health Technology Project of Hangzhou (Grant no. A20220029).

Author information

Authors and Affiliations

Authors

Contributions

QW, JZ and SM contributed to the study conception and design; QW, JZ and LP performed the experiments; QW, JZ, LP and JL analyzed and interpreted data and statistical analysis; SZ and YY edited the manuscript; QW and JZ wrote the manuscript.

Corresponding authors

Correspondence to Shenglin Ma or Qiong Wu.

Ethics declarations

Conflict of interest

The authors declare no potential conflicts of interest.

Ethics approval

The ethics committee of Shanghai Outdo Biotech Company approved all study procedures, which were carried out according to the 1964 Helsinki Declaration.

Informed consent

All patients in the study provided informed written consent.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Pan, L., Zhang, S. et al. CISD2 promotes lung squamous carcinoma cell migration and invasion via the TGF-β1-induced Smad2/3 signaling pathway. Clin Transl Oncol 25, 3527–3540 (2023). https://doi.org/10.1007/s12094-023-03222-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-023-03222-5

Keywords

Navigation