Skip to main content

Advertisement

Log in

A concise review on miRNAs as regulators of colon cancer stem cells and associated signalling pathways

  • REVIEW ARTICLE
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Despite recent therapy advances and a better understanding of colon cancer biology, it remains one of the major causes of death. The cancer stem cells, associated with the progression, metastasis, and recurrence of colon cancer, play a major role in promoting the development of tumour and are found to be chemo resistant. The stroma of the tumour, which makes up the bulk of the tumour mass, is composed of the tumour microenvironment. With the advent of theranostic and the development of personalised medicine, miRNAs are becoming increasingly important in the context of colon malignancies. A holistic understanding of the regulatory roles of miRNAs in cancer cells and cancer stem cells will allow us to design effective strategies to regulate miRNAs, which could lead to improved clinical translation and creating a potent colon cancer treatment strategy. In this review paper, we briefly discuss the history of miRNA as well as the mechanisms of miRNA and cancer stem cells that contribute to the tumour growth, apoptosis, and advancement of colon cancer. The usefulness of miRNA in colorectal cancer theranostic is further concisely reviewed. We conclude by holding a stance in addressing the prospects and possibilities for miRNA by the disclosure of recent theranostic approaches aimed at eradicating cancer stem cells and enhancing overall cancer treatment outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

NA.

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.

    Article  PubMed  Google Scholar 

  2. Nusse R, Brown A, Papkoff J, Scambler P, Shackleford G, McMahon A, Moon R, et al. A new nomenclature for int-1 and related genes: the Wnt gene family. Cell. 1991;64:231. https://doi.org/10.1016/0092-8674(91)90633-a.

    Article  CAS  PubMed  Google Scholar 

  3. Koveitypour Z, Panahi F, Vakilian M, Peymani M, Seyed Forootan F, Nasr Esfahani MH, et al. Signaling pathways involved in colorectal cancer progression. Cell Biosci. 2019;9:1–4. https://doi.org/10.1186/s13578-019-0361-4.

    Article  Google Scholar 

  4. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391:806–11. https://doi.org/10.1038/35888.

    Article  CAS  PubMed  Google Scholar 

  5. Starega-Roslan J, Krol J, Koscianska E, Kozlowski P, Szlachcic WJ, Sobczak K, et al. Structural basis of microRNA length variety. Nucleic Acids Res. 2011;39:257–68. https://doi.org/10.1093/nar/gkq727.

    Article  CAS  PubMed  Google Scholar 

  6. Forterre A, Komuro H, Aminova S, Harada M. A comprehensive review of cancer MicroRNA therapeutic delivery strategies. Cancers (Basel). 2020;12:1852. https://doi.org/10.3390/cancers12071852.

    Article  CAS  PubMed  Google Scholar 

  7. Friedman RC, Farh KK, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009;19:92–105. https://doi.org/10.1101/gr.082701.108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Link A, Balaguer F, Shen Y, Nagasaka T, Lozano JJ, Boland CR, et al. Fecal microRNAs as novel biomarkers for colon cancer screening fecal micrornas and cancer biomarkers. Cancer Epidemiol Biomark Prev. 2010;19:1766–74. https://doi.org/10.1158/1055-9965.EPI-10-0027.

    Article  CAS  Google Scholar 

  9. Arroyo JD, Chevillet JR, Kroh EM, Ruf IK, Pritchard CC, Gibson DF, et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci U S A. 2011;108:5003–8. https://doi.org/10.1073/pnas.1019055108.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lindow M, Kauppinen S. Discovering the first microRNA-targeted drug. J Cell Biol. 2012;199:407–12. https://doi.org/10.1083/jcb.201208082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Paul S, Vazquez LA, Uribe SP, Cardenas LA, Aguilar MF, Chakraborty S, et al. Roles of microRNAs in carbohydrate and lipid metabolism disorders and their therapeutic potential. Biochimie. 2021;187:83–93. https://doi.org/10.1016/j.biochi.2021.05.015.

    Article  CAS  PubMed  Google Scholar 

  12. Wu X, Yan F, Wang L, Sun G, Liu J, Qu M, et al. MicroRNA: another pharmacological avenue for colorectal cancer? Front Cell Dev Biol. 2020;8:812. https://doi.org/10.3389/fcell.2020.00812.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Bravo V, Rosero S, Ricordi C, Pastori RL. Instability of miRNA and cDNAs derivatives in RNA preparations. Biochem Biophys Res Commun. 2007;353:1052–5. https://doi.org/10.1016/j.bbrc.2006.12.135.

    Article  CAS  PubMed  Google Scholar 

  14. Bernardo BC, Charchar FJ, Lin RC, McMullen JR. A microRNA guide for clinicians and basic scientists: background and experimental techniques. Heart Lung Circ. 2012;21:131–42. https://doi.org/10.1016/j.hlc.2011.11.002.

    Article  CAS  PubMed  Google Scholar 

  15. Khatri NI, Rathi MN, Baradia DP, Trehan S, Misra A. In vivo delivery aspects of miRNA, shRNA, and siRNA. Crit Rev Ther Drug Carrier Syst. 2012;29:487–527. https://doi.org/10.1615/critrevtherdrugcarriersyst.v29.i6.20.

    Article  CAS  PubMed  Google Scholar 

  16. Xie T, Li L. Stem cells and their niche: an inseparable relationship. Development. 2007;134:2001–6. https://doi.org/10.1242/dev.002022.

    Article  CAS  PubMed  Google Scholar 

  17. Lu P, Weaver VM, Werb Z. The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol. 2012;196:395–406. https://doi.org/10.1083/jcb.201102147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wong GS, Rustgi AK. Matricellular proteins: priming the tumour microenvironment for cancer development and metastasis. Br J Cancer. 2013;108:755–61. https://doi.org/10.1038/bjc.2012.592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cuiffo BG, Karnoub AE. Mesenchymal stem cells in tumor development: emerging roles and concepts. Cell Adh Migr. 2012;6:220–30. https://doi.org/10.4161/cam.20875.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Nishimura K, Semba S, Aoyagi K, Sasaki H, Yokozaki H. Mesenchymal stem cells provide an advantageous tumor microenvironment for the restoration of cancer stem cells. Pathobiology. 2012;79:290–306. https://doi.org/10.1159/000337296.

    Article  CAS  PubMed  Google Scholar 

  21. Mantovani A, Sica A. Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr Opin Immunol. 2010;22:231–7. https://doi.org/10.1016/j.coi.2010.01.009.

    Article  CAS  PubMed  Google Scholar 

  22. Jinushi M, Baghdadi M, Chiba S, Yoshiyama H. Regulation of cancer stem cell activities by tumor-associated macrophages. Am J Cancer Res. 2012;2:529–39.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Yu X, Li H, Ren X. Interaction between regulatory T cells and cancer stem cells. Int J Cancer. 2012;131:1491–8. https://doi.org/10.1002/ijc.27634.

    Article  CAS  PubMed  Google Scholar 

  24. Korkaya H, Liu S, Wicha MS. Breast cancer stem cells, cytokine networks, and the tumor microenvironment. J Clin Invest. 2011;121:3804–9. https://doi.org/10.1172/JCI57099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ye J, Wu D, Wu P, Chen Z, Huang J. The cancer stem cell niche: cross talk between cancer stem cells and their microenvironment. Tumour Biol. 2014;35:3945–51. https://doi.org/10.1007/s13277-013-1561-x.

    Article  CAS  PubMed  Google Scholar 

  26. Yu Y, Sarkar FH, Majumdar AP. Down-regulation of miR-21 induces differentiation of chemoresistant colon cancer cells and enhances susceptibility to therapeutic regimens. Transl Oncol. 2013;6:180–6. https://doi.org/10.1593/tlo.12397.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Nagel R, le Sage C, Diosdado B, van der Waal M, Oude Vrielink JA, Bolijn A, et al. Regulation of the adenomatous polyposis coli gene by the miR-135 family in colorectal cancer. Cancer Res. 2008;68:5795–802. https://doi.org/10.1158/0008-5472.CAN-08-0951.

    Article  CAS  PubMed  Google Scholar 

  28. Ma Y, Zhang P, Wang F, Zhang H, Yang Y, Shi C, et al. Elevated oncofoetal miR-17-5p expression regulates colorectal cancer progression by repressing its target gene P130. Nat Commun. 2012;3:1–2. https://doi.org/10.1038/ncomms2276.

    Article  CAS  Google Scholar 

  29. Bu P, Chen KY, Chen JH, Wang L, Walters J, Shin YJ, et al. A microRNA miR-34a-regulated bimodal switch targets Notch in colon cancer stem cells. Cell Stem Cell. 2013;12(5):602–15. https://doi.org/10.1016/j.stem.2013.03.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cheng D, Zhao S, Tang H, Zhang D, Sun H, Yu F, et al. MicroRNA-20a-5p promotes colorectal cancer invasion and metastasis by downregulating Smad4. Oncotarget. 2016;7:45199–213. https://doi.org/10.18632/oncotarget.9900.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Liu M, Xu A, Yuan X, Zhang Q, Fang T, Wang W, et al. Downregulation of microRNA-409-3p promotes aggressiveness and metastasis in colorectal cancer: an indication for personalized medicine. J Transl Med. 2015;13:1–9. https://doi.org/10.1186/s12967-015-0533-x.

    Article  CAS  Google Scholar 

  32. Lu YX, Yuan L, Xue XL, Zhou M, Liu Y, Zhang C, et al. Regulation of colorectal carcinoma stemness, growth, and metastasis by an miR-200c-Sox2–negative feedback loop mechanism. Clin Cancer Res. 2014;20:2631–42. https://doi.org/10.1158/1078-0432.CCR-13-2348.

    Article  CAS  PubMed  Google Scholar 

  33. Bitarte N, Bandres E, Boni V, Zarate R, Rodriguez J, Gonzalez-Huarriz M, et al. MicroRNA-451 is involved in the self-renewal, tumorigenicity, and chemoresistance of colorectal cancer stem cells. Stem Cells. 2011;29:1661–71. https://doi.org/10.1002/stem.741.

    Article  CAS  PubMed  Google Scholar 

  34. Ye J, Wu X, Wu D, Wu P, Ni C, Zhang Z, et al. MiRNA-27b targets vascular endothelial growth factor C to inhibit tumor progression and angiogenesis in colorectal cancer. PLoS ONE. 2013;8:e60687. https://doi.org/10.1371/journal.pone.0060687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hwang WL, Jiang JK, Yang SH, Huang TS, Lan HY, Teng HW, et al. MicroRNA-146a directs the symmetric division of Snail-dominant colorectal cancer stem cells. Nat Cell Biol. 2014;16:268–80. https://doi.org/10.1038/s41556-019-0286-5.

    Article  CAS  PubMed  Google Scholar 

  36. Dalerba P, Dylla SJ, Park IK, Liu R, Wang X, Cho RW, et al. Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci U S A. 2007;104:10158–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Heijden MV, Vermeulen LA. Cancer stem cell perspective on minimal residual disease in solid malignancies incancer stem cell resistance to targeted therapy. Front Immunol. 2019;11:1280. https://doi.org/10.3389/fimmu.2020.01280.

    Article  CAS  Google Scholar 

  38. Jahanafrooz Z, Mosafer J, Akbari M, Hashemzaei M, Mokhtarzadeh A, Baradaran B. Colon cancer therapy by focusing on colon cancer stem cells and their tumor microenvironment. J Cell Physiol. 2020;235:4153–66. https://doi.org/10.1002/jcp.29337.

    Article  CAS  PubMed  Google Scholar 

  39. De Robertis M, Poeta ML, Signori E, Fazio VM. Current understanding and clinical utility of miRNAs regulation of colon cancer stem cells. Semin Cancer Biol. 2018;53:232–47. https://doi.org/10.1016/j.semcancer.2018.08.008.

    Article  CAS  PubMed  Google Scholar 

  40. Stark VA, Facey CO, Viswanathan V, Boman BM. The role of miRNAs, miRNA clusters, and isomiRs in development of cancer stem cell populations in colorectal cancer. Int J Mol Sci. 2021;22:1424. https://doi.org/10.3390/ijms22031424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Shirmohamadi M, Eghbali E, Najjary S, Mokhtarzadeh A, Kojabad AB, Hajiasgharzadeh K, et al. Regulatory mechanisms of microRNAs in colorectal cancer and colorectal cancer stem cells. J Cell Physiol. 2020;235:776–89. https://doi.org/10.1002/jcp.29042.

    Article  CAS  PubMed  Google Scholar 

  42. Das PK, Islam F, Lam AK. The roles of cancer stem cells and therapy resistance in colorectal carcinoma. Cells. 2020;9:1392. https://doi.org/10.3390/cells9061392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ullmann P, Nurmik M, Schmitz M, Rodriguez F, Weiler J, Qureshi-Baig K, et al. Tumor suppressor miR-215 counteracts hypoxia-induced colon cancer stem cell activity. Cancer Lett. 2019;450:32–41. https://doi.org/10.1016/j.canlet.2019.02.030.

    Article  CAS  PubMed  Google Scholar 

  44. Angius A, Scanu AM, Arru C, Muroni MR, Rallo V, Deiana G, et al. Portrait of cancer stem cells on colorectal cancer: Molecular biomarkers, signaling pathways and miRNAome. Int J Mol Sci. 2021;22:1603. https://doi.org/10.3390/ijms22041603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ye J, Lei J, Fang Q, Shen Y, Xia W, Hu X, et al. miR-4666-3p and miR-329 synergistically suppress the stemness of colorectal cancer cells via targeting TGF-β/Smad pathway. Front Oncol. 2019;9:1251. https://doi.org/10.3389/fonc.2019.01251.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Poturnajova M, Furielova T, Balintova S, Schmidtova S, Kucerova L, Matuskova M. Molecular features, and gene expression signature of metastatic colorectal cancer. Oncol Rep. 2012. https://doi.org/10.3892/or.2021.7961.

    Article  Google Scholar 

  47. Mélin C, Perraud A, Akil H, Jauberteau MO, Cardot P, Mathonnet M, et al. Cancer stem cell sorting from colorectal cancer cell lines by sedimentation field flow fractionation. Anal Chem. 2012;84(3):1549–56. https://doi.org/10.1021/ac202797z.

    Article  CAS  PubMed  Google Scholar 

  48. Anderson EC, Hessman C, Levin TG, Monroe MM, Wong MH. The role of colorectal cancer stem cells in metastatic disease and therapeutic response. Cancers. 2011;3(1):319–39. https://doi.org/10.3390/cancers3010319.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Galizia G, Gemei M, Del Vecchio L, Zamboli A, Di Noto R, Mirabelli P, et al. Combined CD133/CD44 expression as a prognostic indicator of disease-free survival in patients with colorectal cancer. Arch Surg. 2012;147(1):18–24. https://doi.org/10.1001/archsurg.2011.795.

    Article  CAS  PubMed  Google Scholar 

  50. Batlle E, Henderson JT, Beghtel H, van den Born MM, Sancho E, Huls G, et al. β-Catenin and TCF mediate cell positioning in the intestinal epithelium by controlling the expression of EphB/ephrinB. Cell. 2002;111(2):251–63. https://doi.org/10.1016/S0092-8674(02)01015-2.

    Article  CAS  PubMed  Google Scholar 

  51. MacDonald BT, He X. Frizzled and LRP5/6 receptors for Wnt/β-catenin signaling. Cold Spring Harb Perspect Biol. 2012;4(12):007880. https://doi.org/10.1101/cshperspect.a007880.

    Article  CAS  Google Scholar 

  52. Liu C, Li Y, Semenov M, Han C, Baeg GH, Tan Y, et al. Control of β-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell. 2002;108(6):837–47. https://doi.org/10.1016/S0092-8674(02)00685-2.

    Article  CAS  PubMed  Google Scholar 

  53. Yan KS, Janda CY, Chang J, Zheng GX, Larkin KA, Luca VC, et al. Non-equivalence of Wnt and R-spondin ligands during Lgr5+ intestinal stem-cell self-renewal. Nature. 2017;545(7653):238–42. https://doi.org/10.1038/nature22313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Liu D, Du L, Chen D, Ye Z, Duan H, Tu T, et al. Reduced CD146 expression promotes tumorigenesis and cancer stemness in colorectal cancer through activating Wnt/β-catenin signaling. Oncotarget. 2016;7(26):40704. https://doi.org/10.18632/oncotarget.9930.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Reedijk M, Odorcic S, Zhang H, Chetty R, Tennert C, Dickson BC, et al. Activation of Notch signaling in human colon adenocarcinoma. Int J Oncol. 2008;33(6):1223–9. https://doi.org/10.3892/ijo_00000112.

    Article  PubMed  Google Scholar 

  56. Sureban SM, May R, George RJ, Dieckgraefe BK, McLeod HL, Ramalingam S, et al. Knockdown of RNA binding protein musashi-1 leads to tumor regression in vivo. Gastroenterology. 2008;134(5):1448–58. https://doi.org/10.1053/j.gastro.2008.02.057.

    Article  CAS  PubMed  Google Scholar 

  57. Ma Y, Zhang P, Wang F, Yang J, Yang Z, Qin H. The relationship between early embryo development and tumourigenesis. J Cell Mol Med. 2010;14(12):2697–701. https://doi.org/10.1111/j.1582-4934.2010.01191.x.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Li Q, Lex RK, Chung H, Giovanetti SM, Ji Z, Ji H, et al. The pluripotency factor NANOG binds to GLI proteins and represses hedgehog-mediated transcription. JBC. 2016;291(13):7171–82. https://doi.org/10.1074/jbc.M116.714857.

    Article  CAS  Google Scholar 

  59. Oniscu A, James RM, Morris RG, Bader S, Malcomson RD, Harrison DJ. Expression of Sonic hedgehog pathway genes is altered in colonic neoplasia. The Journal of Pathology: A Journal of the Pathological Society of Great Britain and Ireland. 2004;203(4):909–17. https://doi.org/10.1002/path.1591.

    Article  CAS  Google Scholar 

  60. Bian YH, Huang SH, Yang L, Ma XL, Xie JW, Zhang HW. Sonic hedgehog-Gli1 pathway in colorectal adenocarcinomas. WJG. 2009;13(11):1659.

    Article  Google Scholar 

  61. Varnat F, Duquet A, Malerba M, Zbinden M, Mas C, Gervaz P, et al. Human colon cancer epithelial cells harbour active HEDGEHOG-GLI signalling that is essential for tumour growth, recurrence, metastasis and stem cell survival and expansion. EMBO Mol Med. 2009;1(6–7):338–51. https://doi.org/10.1002/emmm.200900039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wahab S, Alshahrani MY, Ahmad MF, Abbas H. Current trends, and future perspectives of nanomedicine for the management of colon cancer. Eur J Pharmacol. 2021;910:174464. https://doi.org/10.1016/j.ejphar.2021.174464.

    Article  CAS  PubMed  Google Scholar 

  63. Dembic Z. Antitumor drugs and their targets. Molecules. 2020;25(23):5776. https://doi.org/10.3390/molecules25235776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Jothimani G, Bhatiya M, Pathak S, Paul S, Banerjee A. Tumor suppressor microRNAs in gastrointestinal cancers: A mini review. Recent Adv Inflammat Allergy Drug Discov. 2022. https://doi.org/10.2174/2772270816666220606112727.

    Article  Google Scholar 

  65. Krajewska JB, Fichna J, Mosińska P. One step ahead: miRNA-34 in colon cancer-future diagnostic and therapeutic tool? Crit Rev Oncol Hematol. 2018;132:1–8. https://doi.org/10.1016/j.critrevonc.2018.09.006.

    Article  PubMed  Google Scholar 

  66. Li W, Wang Y, Liu R, Kasinski AL, Shen H, Slack FJ, et al. MicroRNA-34a: potent tumor suppressor, cancer stem cell inhibitor, and potential anticancer therapeutic. Front Cell Dev Biol. 2021;9:640587. https://doi.org/10.3389/fcell.2021.640587.

    Article  PubMed  Google Scholar 

  67. Kim D, Kim Y, Kim Y. Effects of β-carotene on expression of selected microRNAs, histone acetylation, and DNA methylation in colon cancer stem cells. JCP. 2019;24(4):224.

    PubMed  PubMed Central  Google Scholar 

  68. Long J, He Q, Yin Y, Lei X, Li Z, Zhu W. The effect of miRNA and autophagy on colorectal cancer. Cell Prolif. 2020;53(10):e12900. https://doi.org/10.1111/cpr.12900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Asadzadeh Z, Mansoori B, Mohammadi A, Aghajani M, Haji-Asgarzadeh K, Safarzadeh E, et al. MicroRNAs in cancer stem cells: Biology, pathways, and therapeutic opportunities. J Cell Physiol. 2019;234(7):10002–17. https://doi.org/10.1002/jcp.27885.

    Article  CAS  PubMed  Google Scholar 

  70. Das PK, Zahan T, Abdur Rakib M, Khanam JA, Pillai S, Islam F. Natural Compounds Targeting Cancer Stem Cells: A Promising Resource for Chemotherapy. Anticancer Agents Med Chem. 2019;19(15):1796–808. https://doi.org/10.2174/1871520619666190704111714.

    Article  CAS  PubMed  Google Scholar 

  71. Pistritto G, Trisciuoglio D, Ceci C, Garufi A, D’Orazi G. Apoptosis as anticancer mechanism: function and dysfunction of its modulators and targeted therapeutic strategies. Aging (Albany NY). 2016;8(4):603.

    Article  CAS  PubMed  Google Scholar 

  72. Garza Treviño EN, González PD, Valencia Salgado CI, Martinez GA. Effects of pericytes and colon cancer stem cells in the tumor microenvironment. Cancer Cell Int. 2019;19(1):1–2. https://doi.org/10.1186/s12935-019-0888-9.

    Article  Google Scholar 

  73. Akshaya K, Arthi C, Pavithra AJ, Poovizhi P, Antinate SS, Hikku GS, et al. Bioconjugated gold nanoparticles as an efficient colorimetric sensor for cancer diagnostics. Photodiagn Photodyn Therapy. 2020;30:101699. https://doi.org/10.1016/j.pdpdt.2020.101699.

    Article  CAS  Google Scholar 

  74. Girigoswami K, Girigoswami A. A review on the role of nanosensors in detecting cellular miRNA expression in colorectal cancer. EMIDDT. 2021;21(1):12–26. https://doi.org/10.2174/1871530320666200515115723.

    Article  CAS  Google Scholar 

  75. Garzon R, Marcucci G, Croce CM. Targeting microRNAs in cancer: rationale, strategies, and challenges. Nat Rev Drug Discov. 2010;9(10):775–89. https://doi.org/10.1038/nrd3179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Bader AG, Brown D, Stoudemire J, Lammers P. Developing therapeutic microRNAs for cancer. Gene Ther. 2011;18(12):1121–6. https://doi.org/10.1038/gt.2011.79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Pereira DM, Rodrigues PM, Borralho PM, Rodrigues CM. Delivering the promise of miRNA cancer therapeutics. Drug Discovery Today. 2013;18(5–6):282–9. https://doi.org/10.1016/j.drudis.2012.10.002.

    Article  CAS  PubMed  Google Scholar 

  78. Akao Y, Nakagawa Y, Naoe T. let-7 microRNA functions as a potential growth suppressor in human colon cancer cells. Biol Pharm Bull. 2006;29(5):903–6. https://doi.org/10.1248/bpb.29.903.

    Article  CAS  PubMed  Google Scholar 

  79. Jaratlerdsiri W, Chan EK, Gong T, Petersen DC, Kalsbeek AM, Venter PA, et al. Whole-genome sequencing reveals elevated tumor mutational burden and initiating driver mutations in African men with treatment-naïve, high-risk prostate cancer. Cancer Res. 2018;78(24):6736–46. https://doi.org/10.1158/0008-5472.CAN-18-0254.

    Article  CAS  PubMed  Google Scholar 

  80. Sahin U, Karikó K, Türeci Ö. mRNA-based therapeutics—developing a new class of drugs. Nat Rev Drug Discov. 2014;13(10):759–80. https://doi.org/10.1038/nrd4278.

    Article  CAS  PubMed  Google Scholar 

  81. Bravo Vázquez LA, Moreno Becerril MY, Mora Hernández EO, León Carmona GG, Aguirre Padilla ME, Chakraborty S, et al. The emerging role of microRNAs in bone diseases and their therapeutic potential. Molecules. 2021;27(1):211. https://doi.org/10.3390/molecules27010211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ruiz-Manriquez LM, Estrada-Meza C, Benavides-Aguilar JA, Ledesma-Pacheco SJ, Torres-Copado A, Serrano-Cano FI, et al. Phytochemicals mediated modulation of microRNAs and long non-coding RNAs in cancer prevention and therapy. Phytother Res. 2022;36(2):705–29. https://doi.org/10.1002/ptr.7338.

    Article  CAS  PubMed  Google Scholar 

  83. Pandi S, Kulanthaivel L, Subbaraj GK, Rajaram S, Subramanian S. Screening of potential breast cancer inhibitors through molecular docking and molecular dynamics simulation. Biomed Res Int. 2022. https://doi.org/10.1155/2022/3338549.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors of this paper are thankful to Chettinad Academy of Research and Education (CARE) for providing the support infrastructurally and to DST, SERB, Govt of India, for the support.

Funding

This work was supported by the DST Inspire research student grant with award number 190963 and Departmental Seed Grants to Dr. Antara Banerjee from Chettinad academy of Research and Education with reference number -Ref.No.004/Regr/AR-Research/2022-05.

Author information

Authors and Affiliations

Authors

Contributions

The study was designed, and the manuscript was written by AB, DD, MK, CC, XS and reviewed and edited by SP, AB, AZ, HZ and SP.

Corresponding authors

Correspondence to Antara Banerjee or Xiao-Feng Sun.

Ethics declarations

Conflict of interest

All authors declare that there are no conflicts of interests or competing interests.

Ethical approval and Informed consent

Ethical approval and informed consent are not applicable for the present work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banerjee, A., Deka, D., Muralikumar, M. et al. A concise review on miRNAs as regulators of colon cancer stem cells and associated signalling pathways. Clin Transl Oncol 25, 3345–3356 (2023). https://doi.org/10.1007/s12094-023-03200-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-023-03200-x

Keywords

Navigation