Skip to main content

Advertisement

Log in

Single-cell RNA sequencing reveals the lineage of malignant epithelial cells and upregulation of TAGLN2 promotes peritoneal metastasis in gastric cancer

  • RESEARCH ARTICLE
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

A Correction to this article was published on 16 March 2024

This article has been updated

Abstract

Background

Peritoneal metastasis (PM) is an important factor contributing to poor prognosis in patients with gastric cancer (GC). Transcriptomic sequencing has been used to explore the molecular changes in metastatic cancers, but comparing the bulk RNA-sequencing data between primary tumors and metastases in PM studies is unreasonable due to the small proportion of tumor cells in PM tissues.

Methods

We performed single-cell RNA-sequencing analysis on four gastric adenocarcinoma specimens, including one primary tumor sample (PT), one adjacent nontumoral sample (PN), one peritoneal metastatic sample (MT) and one normal peritoneum sample (MN), from the same patient. Pseudotime trajectory analysis was used to display the process by which nonmalignant epithelial cells transform into tumor cells and then metastasize to the peritoneum. Finally, in vitro and in vivo assays were used to validate one of the selected genes that promote peritoneal metastasis.

Results

Single-cell RNA sequencing showed that a development curve was found from normal mucosa to tumor tissues and then into metastatic sites on peritoneum. TAGLN2 was found to trigger this metastasis process. The migration and invasion capability of GC cells were changed by downregulating and upregulating TAGLN2 expression. Mechanistically, TAGLN2 might modulate tumor metastasis via alterations in cell morphology and several signaling pathways, thus promoting epithelial–mesenchymal transition (EMT).

Conclusions

In summary, we identified and validated TAGLN2 as a novel gene involved in GC peritoneal metastasis. This study provided valuable insight into the mechanisms of GC metastasis and developed a potential therapeutic target to prevent GC cell dissemination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author.

Change history

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49. https://doi.org/10.3322/caac.21660.

    Article  PubMed  Google Scholar 

  2. Al-Batran SE, Homann N, Pauligk C, Illerhaus G, Martens UM, Stoehlmacher J, et al. Effect of neoadjuvant chemotherapy followed by surgical resection on survival in patients with limited metastatic gastric or gastroesophageal junction cancer: the AIO-FLOT3 trial. JAMA Oncol. 2017;3(9):1237–44. https://doi.org/10.1001/jamaoncol.2017.0515.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Koemans WJ, Lurvink RJ, Grootscholten C, Verhoeven RHA, de Hingh IH, van Sandick JW. Synchronous peritoneal metastases of gastric cancer origin: incidence, treatment and survival of a nationwide Dutch cohort. Gastric Cancer. 2021;24(4):800–9. https://doi.org/10.1007/s10120-021-01160-1.

    Article  PubMed  Google Scholar 

  4. Tan HL, Chia CS, Tan GH, Choo SP, Tai DW, Chua CW, et al. Gastric peritoneal carcinomatosis - a retrospective review. World J Gastrointest Oncol. 2017;9(3):121–8. https://doi.org/10.4251/wjgo.v9.i3.121.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Zhu M, Zhang N, He S, Lu X. Exosomal miR-106a derived from gastric cancer promotes peritoneal metastasis via direct regulation of Smad7. Cell Cycle. 2020;19(10):1200–21. https://doi.org/10.1080/15384101.2020.1749467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gwee YX, Chia DKA, So J, Ceelen W, Yong WP, Tan P, et al. Integration of genomic biology into therapeutic strategies of gastric cancer peritoneal metastasis. J Clin Oncol. 2022;40(24):2830. https://doi.org/10.1200/JCO.21.02745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nicolson GL, Belloni PN, Tressler RJ, Dulski K, Inoue T, Cavanaugh PG. Adhesive, invasive, and growth properties of selected metastatic variants of a murine large-cell lymphoma. Invasion Metastasis. 1989;9(2):102–16.

    CAS  PubMed  Google Scholar 

  8. Welch DR, Hurst DR. Defining the hallmarks of metastasis. Cancer Res. 2019;79(12):3011–27. https://doi.org/10.1158/0008-5472.CAN-19-0458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jo S, Kim HR, Mun Y, Jun CD. Transgelin-2 in immunity: its implication in cell therapy. J Leukoc Biol. 2018;104(5):903–10. https://doi.org/10.1002/JLB.MR1117-470R.

    Article  CAS  PubMed  Google Scholar 

  10. Sokolowska I, Dorobantu C, Woods AG, Macovei A, Branza-Nichita N, Darie CC. Proteomic analysis of plasma membranes isolated from undifferentiated and differentiated HepaRG cells. Proteome Sci. 2012;10(1):47. https://doi.org/10.1186/1477-5956-10-47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yulis M, Kusters DHM, Nusrat A. Cadherins: cellular adhesive molecules serving as signalling mediators. J Physiol. 2018;596(17):3883–98. https://doi.org/10.1113/JP275328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang JC, Helmke BP, Shum A, Du K, Yu WW, Lu MM, et al. SM22beta encodes a lineage-restricted cytoskeletal protein with a unique developmentally regulated pattern of expression. Mech Dev. 2002;115(1–2):161–6. https://doi.org/10.1016/s0925-4773(02)00088-6.

    Article  CAS  PubMed  Google Scholar 

  13. Sun Y, He W, Luo M, Zhou Y, Chang G, Ren W, et al. Role of transgelin-2 in diabetes-associated pancreatic ductal adenocarcinoma. Oncotarget. 2017;8(30):49592–604. https://doi.org/10.18632/oncotarget.17519.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zhang Y, Ye Y, Shen D, Jiang K, Zhang H, Sun W, et al. Identification of transgelin-2 as a biomarker of colorectal cancer by laser capture microdissection and quantitative proteome analysis. Cancer Sci. 2010;101(2):523–9. https://doi.org/10.1111/j.1349-7006.2009.01424.x.

    Article  CAS  PubMed  ADS  Google Scholar 

  15. Jin H, Cheng X, Pei Y, Fu J, Lyu Z, Peng H, et al. Identification and verification of transgelin-2 as a potential biomarker of tumor-derived lung-cancer endothelial cells by comparative proteomics. J Proteomics. 2016;136:77–88. https://doi.org/10.1016/j.jprot.2015.12.012.

    Article  CAS  PubMed  Google Scholar 

  16. Shi YY, Wang HC, Yin YH, Sun WS, Li Y, Zhang CQ, et al. Identification and analysis of tumour-associated antigens in hepatocellular carcinoma. Br J Cancer. 2005;92(5):929–34. https://doi.org/10.1038/sj.bjc.6602460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Belczacka I, Latosinska A, Metzger J, Marx D, Vlahou A, Mischak H, et al. Proteomics biomarkers for solid tumors: Current status and future prospects. Mass Spectrom Rev. 2019;38(1):49–78. https://doi.org/10.1002/mas.21572.

    Article  CAS  PubMed  ADS  Google Scholar 

  18. Kim IG, Lee JH, Kim SY, Hwang HM, Kim TR, Cho EW. Hypoxia-inducible transgelin 2 selects epithelial-to-mesenchymal transition and gamma-radiation-resistant subtypes by focal adhesion kinase-associated insulin-like growth factor 1 receptor activation in non-small-cell lung cancer cells. Cancer Sci. 2018;109(11):3519–31. https://doi.org/10.1111/cas.13791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yin LM, Ulloa L, Yang YQ. Transgelin-2: biochemical and clinical implications in cancer and asthma. Trends Biochem Sci. 2019;44(10):885–96. https://doi.org/10.1016/j.tibs.2019.05.004.

    Article  CAS  PubMed  Google Scholar 

  20. Kumar V, Ramnarayanan K, Sundar R, Padmanabhan N, Srivastava S, Koiwa M, et al. Single-cell atlas of lineage states, tumor microenvironment, and subtype-specific expression programs in gastric cancer. Cancer Discov. 2022;12(3):670–91. https://doi.org/10.1158/2159-8290.CD-21-0683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. McGinnis CS, Murrow LM, Gartner ZJ. DoubletFinder: doublet detection in single-cell RNA sequencing data using artificial nearest neighbors. Cell Syst. 2019;8(4):329-337 e324. https://doi.org/10.1016/j.cels.2019.03.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM 3rd, et al. Comprehensive integration of single-cell data. Cell. 2019;177(7):1888-1902.e1821. https://doi.org/10.1016/j.cell.2019.05.031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell. 2015;161(5):1202–14. https://doi.org/10.1016/j.cell.2015.05.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Aran D, Looney AP, Liu L, Wu E, Fong V, Hsu A, et al. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat Immunol. 2019;20(2):163–72. https://doi.org/10.1038/s41590-018-0276-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang X, Lan Y, Xu J, Quan F, Zhao E, Deng C, et al. Cell marker: a manually curated resource of cell markers in human and mouse. Nucleic Acids Res. 2019;47(D1):D721–8. https://doi.org/10.1093/nar/gky900.

    Article  CAS  PubMed  Google Scholar 

  26. Qiu X, Mao Q, Tang Y, Wang L, Chawla R, Pliner HA, et al. Reversed graph embedding resolves complex single-cell trajectories. Nat Methods. 2017;14(10):979–82. https://doi.org/10.1038/nmeth.4402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cao J, Spielmann M, Qiu X, Huang X, Ibrahim DM, Hill AJ, et al. The single-cell transcriptional landscape of mammalian organogenesis. Nature. 2019;566(7745):496–502. https://doi.org/10.1038/s41586-019-0969-x.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  28. Patel AP, Tirosh I, Trombetta JJ, Shalek AK, Gillespie SM, Wakimoto H, et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science. 2014;344(6190):1396–401. https://doi.org/10.1126/science.1254257.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  29. Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017;45(W1):W98–102. https://doi.org/10.1093/nar/gkx247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li H, Zhao J, Sun J, Tian C, Jiang Q, Ding C, et al. Demethylation of the SFRP4 promoter drives gastric cancer progression via the Wnt pathway. Mol Cancer Res. 2021;19(9):1454–64. https://doi.org/10.1158/1541-7786.MCR-20-0933.

    Article  CAS  PubMed  Google Scholar 

  31. Chothia C, Jones EY. The molecular structure of cell adhesion molecules. Annu Rev Biochem. 1997;66:823–62. https://doi.org/10.1146/annurev.biochem.66.1.823.

    Article  CAS  PubMed  Google Scholar 

  32. Fujitani K, Yang HK, Mizusawa J, Kim YW, Terashima M, Han SU, et al. Gastrectomy plus chemotherapy versus chemotherapy alone for advanced gastric cancer with a single non-curable factor (REGATTA): a phase 3, randomised controlled trial. Lancet Oncol. 2016;17(3):309–18. https://doi.org/10.1016/S1470-2045(15)00553-7.

    Article  CAS  PubMed  Google Scholar 

  33. Shimura T, Toden S, Kandimalla R, Toiyama Y, Okugawa Y, Kanda M, et al. Genomewide expression profiling identifies a novel miRNA-based signature for the detection of peritoneal metastasis in patients with gastric cancer. Ann Surg. 2021;274(5):e425–34. https://doi.org/10.1097/SLA.0000000000003647.

    Article  PubMed  Google Scholar 

  34. Li H, Fu X, Zhao J, Li C, Li L, Xia P, et al. EXOC4 promotes diffuse-type gastric cancer metastasis via activating FAK signal. Mol Cancer Res. 2022;20(7):1021–34. https://doi.org/10.1158/1541-7786.MCR-21-0441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bae H, Kim H, Chu J, Jang Y, Koh HH, Jung H, et al. Pathologic analyses of peritoneal nodules in gastric cancer patients during surgery-A single cancer center experience with diagnostic pitfalls. Pathol Res Pract. 2019;215(1):195–9. https://doi.org/10.1016/j.prp.2018.11.013.

    Article  CAS  PubMed  Google Scholar 

  36. Wang R, Dang M, Harada K, Han G, Wang F, Pool Pizzi M, et al. Single-cell dissection of intratumoral heterogeneity and lineage diversity in metastatic gastric adenocarcinoma. Nat Med. 2021;27(1):141–51. https://doi.org/10.1038/s41591-020-1125-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cancer Genome Atlas Research N. Comprehensive molecular characterization of gastric adenocarcinoma. Nature. 2014;513(7517):202–9. https://doi.org/10.1038/nature13480.

    Article  CAS  ADS  Google Scholar 

  38. Wang R, Song S, Harada K, Ghazanfari Amlashi F, Badgwell B, Pizzi MP, et al. Multiplex profiling of peritoneal metastases from gastric adenocarcinoma identified novel targets and molecular subtypes that predict treatment response. Gut. 2020;69(1):18–31. https://doi.org/10.1136/gutjnl-2018-318070.

    Article  CAS  PubMed  Google Scholar 

  39. Kakiuchi M, Nishizawa T, Ueda H, Gotoh K, Tanaka A, Hayashi A, et al. Recurrent gain-of-function mutations of RHOA in diffuse-type gastric carcinoma. Nat Genet. 2014;46(6):583–7. https://doi.org/10.1038/ng.2984.

    Article  CAS  PubMed  Google Scholar 

  40. Warburg O. On the origin of cancer cells. Science. 1956;123(3191):309–14. https://doi.org/10.1126/science.123.3191.309.

    Article  CAS  PubMed  ADS  Google Scholar 

  41. Ward PS, Thompson CB. Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell. 2012;21(3):297–308. https://doi.org/10.1016/j.ccr.2012.02.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. LeBleu VS, O’Connell JT, Gonzalez Herrera KN, Wikman H, Pantel K, Haigis MC, et al. PGC-1alpha mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promote metastasis. Nat Cell Biol. 2014;16(10):992–1003. https://doi.org/10.1038/ncb3039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sun Y, Peng W, He W, Luo M, Chang G, Shen J, et al. Transgelin-2 is a novel target of KRAS-ERK signaling involved in the development of pancreatic cancer. J Exp Clin Cancer Res. 2018;37(1):166. https://doi.org/10.1186/s13046-018-0818-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang L, Tan H, Huang Y, Guo M, Dong Y, Liu C, et al. TAGLN2 promotes papillary thyroid carcinoma invasion via the Rap1/PI3K/AKT axis. Endocr Relat Cancer. 2023. https://doi.org/10.1530/ERC-21-0352.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Liu L, Wu N, Wang Y, Zhang X, Xia B, Tang J, et al. TRPM7 promotes the epithelial-mesenchymal transition in ovarian cancer through the calcium-related PI3K/AKT oncogenic signaling. J Exp Clin Cancer Res. 2019;38(1):106. https://doi.org/10.1186/s13046-019-1061-y.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Sheng W, Shi X, Lin Y, Tang J, Jia C, Cao R, et al. Musashi2 promotes EGF-induced EMT in pancreatic cancer via ZEB1-ERK/MAPK signaling. J Exp Clin Cancer Res. 2020;39(1):16. https://doi.org/10.1186/s13046-020-1521-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants awarded to Dr. Junjie Zhao (82002527), Prof. Xuefei Wang (81972228) and Prof. Yihong Sun (81872425) from National Natural Science Foundation of China.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: CJ and JZ; methodology: CJ, HC, JZ. Data curation: CJ, CT, DL, CW; software and formal analysis: HC and CT; resources: TC, BY and MF; investigation: TC and JS; writing—original draft: CJ, JZ and ZW; writing—review and editing: XW and YS. Supervision, funding acquisition and project administration: HL and YS; all the authors read and approved the final manuscript.

Corresponding authors

Correspondence to Haojie Li or Yihong Sun.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Ethical approval

All protocols in this study were approved by ethics committee of The Zhongshan Hospital and conducted in compliance with the Declaration of Helsinki.

Informed consent

Single-cell RNA sequencing data were used from public GEO datasets. All the tissues from patients were obtained after informed consent.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised to correct Fig 4E caption and Figure 5.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5406 KB)

Supplementary file2 (XLSX 5206 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, C., Zhao, J., chen, H. et al. Single-cell RNA sequencing reveals the lineage of malignant epithelial cells and upregulation of TAGLN2 promotes peritoneal metastasis in gastric cancer. Clin Transl Oncol 25, 3405–3419 (2023). https://doi.org/10.1007/s12094-023-03194-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-023-03194-6

Keywords

Navigation