Skip to main content

Advertisement

Log in

ALDH2 activation attenuates oxygen–glucose deprivation/reoxygenation-induced cell apoptosis, pyroptosis, ferroptosis and autophagy

  • RESEARCH ARTICLE
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Purpose

It is previously reported that aldehyde dehydrogenase 2 family member (ALDH2) shows neuroprotective effects in cerebral ischemia/reperfusion injury. However, whether the protective effects are through mediating the programmed cell death is yet to be fully elucidated.

Methods

In vitro oxygen–glucose deprivation/reoxygenation (OGD/R) model was established in HT22 cells and mouse cortical neurons. Subsequently, ALDH2 expression were assessed by qRT-PCR and western blot. The methylation status was examined by methylation-specific PCR (MS-PCR). Then, ALDH2 expression was promoted and suppressed to explore the role of ALDH2 in OGD/R-treated cells. CCK-8 assay was applied to detect cell viability, and flow cytometry was applied to evaluate cell apoptosis. Western blot was applied to detect the apoptosis-related proteins (Caspase 3, Bcl-2 and Bax), necroptosis-related proteins (RIP3 and MLKL), pyroptosis-related proteins (NLRP3 and GSDMD), ferroptosis-related protein (ACSL4 and GPX4), and autophagy-related proteins (LC3B, and p62). IL-1β and IL-18 production was evaluated by ELISA assay. Reactive oxygen species production and Fe2+ content were evaluated by the corresponding detection kit.

Results

In OGD/R-treated cells, ALDH2 expression was decreased, which was due to the hypermethylation of ALDH2 in the promoter region. ALDH2 overexpression improved cell viability and ALDH2 knockdown suppressed cell viability in OGD/R-treated cells. We also found that ALDH2 overexpression attenuated OGD/R-induced cell apoptosis, pyroptosis, ferroptosis and autophagy, while ALDH2 knockdown facilitated the OGD/R-induced cell apoptosis, pyroptosis, ferroptosis and autophagy.

Conclusions

Collectively, our results implied that ALDH2 attenuated OGD/R-induced cell apoptosis, pyroptosis, ferroptosis and autophagy to promote cell viability in HT22 cells and mouse cortical neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets used and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Diseases GBD, Injuries C. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the global burden of disease study 2019. Lancet. 2020;396:1204–22. https://doi.org/10.1016/S0140-6736(20)30925-9.

    Article  Google Scholar 

  2. Ajoolabady A, Wang S, Kroemer G, Penninger JM, Uversky VN, Pratico D, et al. Targeting autophagy in ischemic stroke: From molecular mechanisms to clinical therapeutics. Pharmacol Ther. 2021;225:107848. https://doi.org/10.1016/j.pharmthera.2021.107848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Al-Mufti F, Amuluru K, Roth W, Nuoman R, El-Ghanem M, Meyers PM. Cerebral ischemic reperfusion injury following recanalization of large vessel occlusions. Neurosurgery. 2018;82:781–9. https://doi.org/10.1093/neuros/nyx341.

    Article  PubMed  Google Scholar 

  4. Caprio FZ, Sorond FA. Cerebrovascular disease: primary and secondary stroke prevention. Med Clin North Am. 2019;103:295–308. https://doi.org/10.1016/j.mcna.2018.10.001.

    Article  PubMed  Google Scholar 

  5. Gong L, Tang Y, An R, Lin M, Chen L, Du J. RTN1-C mediates cerebral ischemia/reperfusion injury via ER stress and mitochondria-associated apoptosis pathways. Cell Death Dis. 2017;8:e3080. https://doi.org/10.1038/cddis.2017.465.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Nhu NT, Li Q, Liu Y, Xu J, Xiao SY, Lee SD. Effects of mdivi-1 on neural mitochondrial dysfunction and mitochondria-mediated apoptosis in ischemia-reperfusion injury after stroke: a systematic review of preclinical studies. Front Mol Neurosci. 2021;14:778569. https://doi.org/10.3389/fnmol.2021.778569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dong Y, Hu C, Huang C, Gao J, Niu W, Wang D, et al. Interleukin-22 plays a protective role by regulating the JAK2-stat3 pathway to improve inflammation, oxidative stress, and neuronal apoptosis following cerebral ischemia-reperfusion injury. Mediators Inflamm. 2021;2021:6621296. https://doi.org/10.1155/2021/6621296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ali A, Shah FA, Zeb A, Malik I, Alvi AM, Alkury LT, et al. NF-kappaB inhibitors attenuate MCAO induced neurodegeneration and oxidative stress-a reprofiling approach. Front Mol Neurosci. 2020;13:33. https://doi.org/10.3389/fnmol.2020.00033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Liang J, Wang Q, Li JQ, Guo T, Yu D. Long non-coding RNA MEG3 promotes cerebral ischemia-reperfusion injury through increasing pyroptosis by targeting miR-485/AIM2 axis. Exp Neurol. 2020;325:113139. https://doi.org/10.1016/j.expneurol.2019.113139.

    Article  CAS  PubMed  Google Scholar 

  10. Zhang J, Jiang N, Zhang L, Meng C, Zhao J, Wu J. NLRP6 expressed in astrocytes aggravates neurons injury after OGD/R through activating the inflammasome and inducing pyroptosis. Int Immunopharmacol. 2020;80:106183. https://doi.org/10.1016/j.intimp.2019.106183.

    Article  CAS  PubMed  Google Scholar 

  11. Chen Y, Fan H, Wang S, Tang G, Zhai C, Ferroptosis SL. A novel therapeutic target for ischemia-reperfusion injury. Front Cell Dev Biol. 2021;9:688605. https://doi.org/10.3389/fcell.2021.688605.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Wang P, Cui Y, Ren Q, Yan B, Zhao Y, Yu P, et al. Mitochondrial ferritin attenuates cerebral ischaemia/reperfusion injury by inhibiting ferroptosis. Cell Death Dis. 2021;12:447. https://doi.org/10.1038/s41419-021-03725-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jin R, Yang G, Li G. Inflammatory mechanisms in ischemic stroke: role of inflammatory cells. J Leukoc Biol. 2010;87:779–89. https://doi.org/10.1189/jlb.1109766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mizuma A, Yenari MA. Anti-inflammatory targets for the treatment of reperfusion injury in stroke. Front Neurol. 2017;8:467. https://doi.org/10.3389/fneur.2017.00467.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Shen L, Gan Q, Yang Y, Reis C, Zhang Z, Xu S, et al. Mitophagy in cerebral ischemia and ischemia/reperfusion injury. Front Aging Neurosci. 2021;13:687246. https://doi.org/10.3389/fnagi.2021.687246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ghafouri-Fard S, Shoorei H, Taheri M. Non-coding RNAs participate in the ischemia-reperfusion injury. Biomed Pharmacother. 2020;129:110419. https://doi.org/10.1016/j.biopha.2020.110419.

    Article  CAS  PubMed  Google Scholar 

  17. Bai J, Lyden PD. Revisiting cerebral postischemic reperfusion injury: new insights in understanding reperfusion failure, hemorrhage, and edema. Int J Stroke. 2015;10:143–52. https://doi.org/10.1111/ijs.12434.

    Article  PubMed  Google Scholar 

  18. Ham PB 3rd, Raju R. Mitochondrial function in hypoxic ischemic injury and influence of aging. Prog Neurobiol. 2017;157:92–116. https://doi.org/10.1016/j.pneurobio.2016.06.006.

    Article  CAS  PubMed  Google Scholar 

  19. Bredesen DE, Rao RV, Mehlen P. Cell death in the nervous system. Nature. 2006;443:796–802. https://doi.org/10.1038/nature05293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Vanden Berghe T, Linkermann A, Jouan-Lanhouet S, Walczak H, Vandenabeele P. Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nat Rev Mol Cell Biol. 2014;15:135–47. https://doi.org/10.1038/nrm3737.

    Article  CAS  PubMed  Google Scholar 

  21. Vandenabeele P, Galluzzi L, Vanden Berghe T, Kroemer G. Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat Rev Mol Cell Biol. 2010;11:700–14. https://doi.org/10.1038/nrm2970.

    Article  CAS  PubMed  Google Scholar 

  22. Yang Y, Klionsky DJ. Autophagy and disease: unanswered questions. Cell Death Differ. 2020;27:858–71. https://doi.org/10.1038/s41418-019-0480-9.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Koike M, Shibata M, Tadakoshi M, Gotoh K, Komatsu M, Waguri S, et al. Inhibition of autophagy prevents hippocampal pyramidal neuron death after hypoxic-ischemic injury. Am J Pathol. 2008;172:454–69. https://doi.org/10.2353/ajpath.2008.070876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang D, Qian J, Zhang P, Li H, Shen H, Li X, et al. Gasdermin D serves as a key executioner of pyroptosis in experimental cerebral ischemia and reperfusion model both in vivo and in vitro. J Neurosci Res. 2019;97:645–60. https://doi.org/10.1002/jnr.24385.

    Article  CAS  PubMed  Google Scholar 

  25. Tobin MK, Bonds JA, Minshall RD, Pelligrino DA, Testai FD, Lazarov O. Neurogenesis and inflammation after ischemic stroke: what is known and where we go from here. J Cereb Blood Flow Metab. 2014;34:1573–84. https://doi.org/10.1038/jcbfm.2014.130.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Sun R, Peng M, Xu P, Huang F, Xie Y, Li J, et al. Low-density lipoprotein receptor (LDLR) regulates NLRP3-mediated neuronal pyroptosis following cerebral ischemia/reperfusion injury. J Neuroinflammation. 2020;17:330. https://doi.org/10.1186/s12974-020-01988-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H, et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature. 2015;526:660–5. https://doi.org/10.1038/nature15514.

    Article  CAS  PubMed  Google Scholar 

  28. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149:1060–72. https://doi.org/10.1016/j.cell.2012.03.042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Xu Y, Liu Y, Li K, Yuan D, Yang S, Zhou L, et al. COX-2/PGE2 pathway inhibits the ferroptosis induced by cerebral ischemia reperfusion. Mol Neurobiol. 2022;59:1619–31. https://doi.org/10.1007/s12035-021-02706-1.

    Article  CAS  PubMed  Google Scholar 

  30. Yao Y, Hu S, Zhang C, Zhou Q, Wang H, Yang Y, et al. Ginsenoside Rd attenuates cerebral ischemia/reperfusion injury by exerting an anti-pyroptotic effect via the miR-139–5p/FoxO1/Keap1/Nrf2 axis. Int Immunopharmacol. 2022;105:108582. https://doi.org/10.1016/j.intimp.2022.108582.

    Article  CAS  PubMed  Google Scholar 

  31. Stewart MJ, Malek K, Crabb DW. Distribution of messenger RNAs for aldehyde dehydrogenase 1, aldehyde dehydrogenase 2, and aldehyde dehydrogenase 5 in human tissues. J Investig Med. 1996;44:42–6.

    CAS  PubMed  Google Scholar 

  32. Zimatkin SM, Rout UK, Koivusalo M, Buhler R, Lindros KO. Regional distribution of low-Km mitochondrial aldehyde dehydrogenase in the rat central nervous system. Alcohol Clin Exp Res. 1992;16:1162–7. https://doi.org/10.1111/j.1530-0277.1992.tb00713.x.

    Article  CAS  PubMed  Google Scholar 

  33. Picklo MJ, Olson SJ, Markesbery WR, Montine TJ. Expression and activities of aldo-keto oxidoreductases in Alzheimer disease. J Neuropathol Exp Neurol. 2001;60:686–95. https://doi.org/10.1093/jnen/60.7.686.

    Article  CAS  PubMed  Google Scholar 

  34. Chen CH, Budas GR, Churchill EN, Disatnik MH, Hurley TD, Mochly-Rosen D. Activation of aldehyde dehydrogenase-2 reduces ischemic damage to the heart. Science. 2008;321:1493–5. https://doi.org/10.1126/science.1158554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Guo JM, Liu AJ, Zang P, Dong WZ, Ying L, Wang W, et al. ALDH2 protects against stroke by clearing 4-HNE. Cell Res. 2013;23:915–30. https://doi.org/10.1038/cr.2013.69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ding J, Zhang Q, Luo Q, Ying Y, Liu Y, Li Y, et al. Alda-1 attenuates lung ischemia-reperfusion injury by reducing 4-hydroxy-2-nonenal in alveolar epithelial cells. Crit Care Med. 2016;44:e544-552. https://doi.org/10.1097/CCM.0000000000001563.

    Article  CAS  PubMed  Google Scholar 

  37. Xia P, Zhang F, Yuan Y, Chen C, Huang Y, Li L, et al. ALDH 2 conferred neuroprotection on cerebral ischemic injury by alleviating mitochondria-related apoptosis through JNK/caspase-3 signing pathway. Int J Biol Sci. 2020;16:1303–23. https://doi.org/10.7150/ijbs.38962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kang P, Wang J, Fang D, Fang T, Yu Y, Zhang W, et al. Activation of ALDH2 attenuates high glucose induced rat cardiomyocyte fibrosis and necroptosis. Free Radic Biol Med. 2020;146:198–210. https://doi.org/10.1016/j.freeradbiomed.2019.10.416.

    Article  CAS  PubMed  Google Scholar 

  39. Cao R, Fang D, Wang J, Yu Y, Ye H, Kang P, et al. ALDH2 overexpression alleviates high glucose-induced cardiotoxicity by inhibiting NLRP3 inflammasome activation. J Diabetes Res. 2019;2019:4857921. https://doi.org/10.1155/2019/4857921.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cao Z, Qin H, Huang Y, Zhao Y, Chen Z, Hu J, et al. Crosstalk of pyroptosis, ferroptosis, and mitochondrial aldehyde dehydrogenase 2-related mechanisms in sepsis-induced lung injury in a mouse model. Bioengineered. 2022;13:4810–20. https://doi.org/10.1080/21655979.2022.2033381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chang S, Wu J, Jin J, Shi H, Gao R, Li X, et al. Aldehyde dehydrogenase 2 (ALDH2) elicits protection against pulmonary hypertension via inhibition of ERK1/2-mediated autophagy. Oxid Med Cell Longev. 2022;2022:2555476. https://doi.org/10.1155/2022/2555476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. https://www.procell.com.cn/view/9174.html.

  43. https://www.procell.com.cn/view/2546.html.

  44. https://www.thermofisher.cn/document-connect/document-connect.html?url=https://assets.thermofisher.cn/TFS-Assets%2FLSG%2Fmanuals%2Flipofectamine3000_protocol.pdf.

  45. Tasca CI, Dal-Cim T, Cimarosti H. In vitro oxygen-glucose deprivation to study ischemic cell death. Methods Mol Biol. 2015;1254:197–210. https://doi.org/10.1007/978-1-4939-2152-2_15.

    Article  CAS  PubMed  Google Scholar 

  46. Mahmood T, Yang PC. Western blot: technique, theory, and trouble shooting. N Am J Med Sci. 2012;4:429–34. https://doi.org/10.4103/1947-2714.100998.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9:676–82. https://doi.org/10.1038/nmeth.2019.

    Article  CAS  PubMed  Google Scholar 

  48. Bookout AL, Mangelsdorf DJ. Quantitative real-time PCR protocol for analysis of nuclear receptor signaling pathways. Nucl Recept Signal. 2003;1:e012. https://doi.org/10.1621/nrs.01012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–8. https://doi.org/10.1006/meth.2001.1262.

    Article  CAS  PubMed  Google Scholar 

  50. https://www.beyotime.com/product/C0037.htm.

  51. https://www.beyotime.com/product/C1062L.htm.

  52. Rust S, Funke H, Assmann G. Mutagenically separated PCR (MS-PCR): a highly specific one step procedure for easy mutation detection. Nucleic Acids Res. 1993;21:3623–9. https://doi.org/10.1093/nar/21.16.3623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. https://www.beyotime.com/product/PI301.htm.

  54. https://www.beyotime.com/product/PI553.htm.

  55. https://www.beyotime.com/product/S0033S.htm.

  56. Rubio N. Colorimetric iron quantification assay. Protocols.io. 2019. https://doi.org/10.17504/protocols.io.x2ufqew.

  57. Wang P, Shen C, Diao L, Yang Z, Fan F, Wang C, et al. Aberrant hypermethylation of aldehyde dehydrogenase 2 promoter upstream sequence in rats with experimental myocardial infarction. Biomed Res Int. 2015. https://doi.org/10.1155/2015/503692.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Yang M, Wang A, Li C, Sun J, Yi G, Cheng H, et al. Methylation-induced silencing of ALDH2 facilitates lung adenocarcinoma bone metastasis by activating the MAPK pathway. Front Oncol. 2020;10:1141. https://doi.org/10.3389/fonc.2020.01141.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Moujalled D, Strasser A, Liddell JR. Molecular mechanisms of cell death in neurological diseases. Cell Death Differ. 2021;28:2029–44. https://doi.org/10.1038/s41418-021-00814-y.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Zhong Z, Ye S, Xiong Y, Wu L, Zhang M, Fan X, et al. Decreased expression of mitochondrial aldehyde dehydrogenase-2 induces liver injury via activation of the mitogen-activated protein kinase pathway. Transpl Int. 2016;29:98–107. https://doi.org/10.1111/tri.12675.

    Article  CAS  PubMed  Google Scholar 

  61. Yang Y, Chen W, Wang X, Ge W. Impact of mitochondrial aldehyde dehydrogenase 2 on cognitive impairment in the AD model mouse. Acta Biochim Biophys Sin (Shanghai). 2021;53:837–47. https://doi.org/10.1093/abbs/gmab057.

    Article  CAS  PubMed  Google Scholar 

  62. Xu X, Chua KW, Chua CC, Liu CF, Hamdy RC, Chua BH. Synergistic protective effects of humanin and necrostatin-1 on hypoxia and ischemia/reperfusion injury. Brain Res. 2010;1355:189–94. https://doi.org/10.1016/j.brainres.2010.07.080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Linkermann A, Hackl MJ, Kunzendorf U, Walczak H, Krautwald S, Jevnikar AM. Necroptosis in immunity and ischemia-reperfusion injury. Am J Transplant. 2013;13:2797–804. https://doi.org/10.1111/ajt.12448.

    Article  CAS  PubMed  Google Scholar 

  64. Fang T, Cao R, Wang W, Ye H, Shen L, Li Z, et al. Alterations in necroptosis during ALDH2mediated protection against high glucoseinduced H9c2 cardiac cell injury. Mol Med Rep. 2018;18:2807–15. https://doi.org/10.3892/mmr.2018.9269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Fricker M, Tolkovsky AM, Borutaite V, Coleman M, Brown GC. Neuronal cell death. Physiol Rev. 2018;98:813–80. https://doi.org/10.1152/physrev.00011.2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. McKenzie BA, Dixit VM, Power C. Fiery cell death: pyroptosis in the central nervous system. Trends Neurosci. 2020;43:55–73. https://doi.org/10.1016/j.tins.2019.11.005.

    Article  CAS  PubMed  Google Scholar 

  67. Hu Q, Zuo T, Deng L, Chen S, Yu W, Liu S, et al. beta-Caryophyllene suppresses ferroptosis induced by cerebral ischemia reperfusion via activation of the NRF2/HO-1 signaling pathway in MCAO/R rats. Phytomedicine. 2022;102:154112. https://doi.org/10.1016/j.phymed.2022.154112.

    Article  CAS  PubMed  Google Scholar 

  68. Zhu ZY, Liu YD, Gong Y, Jin W, Topchiy E, Turdi S, et al. Mitochondrial aldehyde dehydrogenase (ALDH2) rescues cardiac contractile dysfunction in an APP/PS1 murine model of Alzheimer’s disease via inhibition of ACSL4-dependent ferroptosis. Acta Pharmacol Sin. 2022;43:39–49. https://doi.org/10.1038/s41401-021-00635-2.

    Article  CAS  PubMed  Google Scholar 

  69. Yu Q, Gao J, Shao X, Lu W, Chen L, Jin L. The effects of alda-1 treatment on renal and intestinal injuries after cardiopulmonary resuscitation in pigs. Front Med (Lausanne). 2022;9:892472. https://doi.org/10.3389/fmed.2022.892472.

    Article  PubMed  Google Scholar 

  70. Allen CL, Bayraktutan U. Oxidative stress and its role in the pathogenesis of ischaemic stroke. Int J Stroke. 2009;4:461–70. https://doi.org/10.1111/j.1747-4949.2009.00387.x.

    Article  CAS  PubMed  Google Scholar 

  71. Swanson KV, Deng M, Ting JP. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat Rev Immunol. 2019;19:477–89. https://doi.org/10.1038/s41577-019-0165-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Filomeni G, De Zio D, Cecconi F. Oxidative stress and autophagy: the clash between damage and metabolic needs. Cell Death Differ. 2015;22:377–88. https://doi.org/10.1038/cdd.2014.150.

    Article  CAS  PubMed  Google Scholar 

  73. Zhao J, Dong Y, Chen X, Xiao X, Tan B, Chen G, et al. p53 inhibition protects against neuronal ischemia/reperfusion injury by the p53/PRAS40/mTOR pathway. Oxid Med Cell Longev. 2021;2021:4729465. https://doi.org/10.1155/2021/4729465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Luo J, Chen J, Yang C, Tan J, Zhao J, Jiang N, et al. 6-Gingerol protects against cerebral ischemia/reperfusion injury by inhibiting NLRP3 inflammasome and apoptosis via TRPV1/FAF1 complex dissociation-mediated autophagy. Int Immunopharmacol. 2021;100:108146. https://doi.org/10.1016/j.intimp.2021.108146.

    Article  CAS  PubMed  Google Scholar 

  75. Liu N, Peng A, Sun H, Zhuang Y, Yu M, Wang Q, et al. LncRNA AC1360072 alleviates cerebral ischemic-reperfusion injury by suppressing autophagy. Aging (Albany NY). 2021;13:19587–97. https://doi.org/10.18632/aging.203369.

    Article  CAS  PubMed  Google Scholar 

  76. Yang Z, Huang C, Wen X, Liu W, Huang X, Li Y, et al. Circular RNA circ-FoxO3 attenuates blood-brain barrier damage by inducing autophagy during ischemia/reperfusion. Mol Ther. 2022;30:1275–87. https://doi.org/10.1016/j.ymthe.2021.11.004.

    Article  CAS  PubMed  Google Scholar 

  77. Xu T, Guo J, Wei M, Wang J, Yang K, Pan C, et al. Aldehyde dehydrogenase 2 protects against acute kidney injury by regulating autophagy via the Beclin-1 pathway. JCI Insight. 2021. https://doi.org/10.1172/jci.insight.138183.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Ji W, Wan T, Zhang F, Zhu X, Guo S, Mei X. Aldehyde dehydrogenase 2 protects against lipopolysaccharide-induced myocardial injury by suppressing mitophagy. Front Pharmacol. 2021;12:641058. https://doi.org/10.3389/fphar.2021.641058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

YQ, YYL and HLZ contributed to research conception and design as well as manuscript drafting; YQ, YYL analyzed and interpreted data; YQ, YYL and HLZ made statistical analysis; YQ, YYL and HLZ revised the manuscript; In addition, all authors approved final manuscript.

Corresponding author

Correspondence to Huilong Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 309 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, Y., Liu, Y. & Zhang, H. ALDH2 activation attenuates oxygen–glucose deprivation/reoxygenation-induced cell apoptosis, pyroptosis, ferroptosis and autophagy. Clin Transl Oncol 25, 3203–3216 (2023). https://doi.org/10.1007/s12094-023-03190-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-023-03190-w

Keywords

Navigation